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Abstract

Recent advances in machine learning make it possible to design efficient pre-
diction algorithms for data sets with huge numbers of parameters. This article
describes a new technique for ‘hedging’ the predictions output by many such
algorithms, including support vector machines, kernel ridge regression, kernel
nearest neighbours, and by many other state-of-the-art methods. The hedged
predictions for the labels of new objects include quantitative measures of their
own accuracy and reliability. These measures are provably valid under the as-
sumption of randomness, traditional in machine learning: the objects and their
labels are assumed to be generated independently from the same probability
distribution. In particular, it becomes possible to control (up to statistical fluc-
tuations) the number of erroneous predictions by selecting a suitable confidence
level. Validity being achieved automatically, the remaining goal of hedged pre-
diction is efficiency: taking full account of the new objects’ features and other
available information to produce as accurate predictions as possible. This can
be done successfully using the powerful machinery of modern machine learning.
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1 Introduction

The two main varieties of the problem of prediction, classification and regres-
sion, are standard subjects in statistics and machine learning. The classical
classification and regression techniques can deal successfully with conventional
small-scale, low-dimensional data sets; however, attempts to apply these tech-
niques to modern high-dimensional and high-throughput data sets encounter
serious conceptual and computational difficulties. Several new techniques, first
of all support vector machines [42, 43] and other kernel methods, have been
developed in machine learning recently with the explicit goal of dealing with
high-dimensional data sets with large numbers of objects.

A typical drawback of the new techniques is the lack of useful measures of
confidence in their predictions. For example, some of the tightest upper bounds
of the popular theory of PAC (probably approximately correct) learning on the
probability of error exceed 1 even for relatively clean data sets ([51], p. 249).
This article describes an efficient way to ‘hedge’ the predictions produced by
the new and traditional machine-learning methods, i.e., to complement them
with measures of their accuracy and reliability. Appropriately chosen, not only
are these measures valid and informative, but they also take full account of the
special features of the object to be predicted.

We call our algorithms for producing hedged predictions conformal predic-
tors; they are formally introduced in Section 3. Their most important property
is the automatic validity under the randomness assumption (to be discussed
shortly). Informally, validity means that conformal predictors never overrate the
accuracy and reliability of their predictions. This property, stated in Sections 3
and 5, is formalized in terms of finite data sequences, without any recourse to
asymptotics.

The claim of validity of conformal predictors depends on an assumption
that is shared by many other algorithms in machine learning, which we call
the assumption of randomness: the objects and their labels are assumed to be
generated independently from the same probability distribution. Admittedly,
this is a strong assumption, and areas of machine learning are emerging that
rely on other assumptions (such as the Markovian assumption of reinforcement
learning; see, e.g., [36]) or dispense with any stochastic assumptions altogether
(competitive on-line learning; see, e.g., [6, 47]). It is, however, much weaker
than assuming a parametric statistical model, sometimes complemented with a
prior distribution on the parameter space, which is customary in the statistical
theory of prediction. And taking into account the strength of the guarantees
that can be proved under this assumption, it does not appear overly restrictive.

So we know that conformal predictors tell the truth. Clearly, this is not
enough: truth can be uninformative and so useless. We will refer to various
measures of informativeness of conformal predictors as their ‘efficiency’. As
conformal predictors are provably valid, efficiency is the only thing we need to
worry about when designing conformal predictors for solving specific problems.
Virtually any classification or regression algorithm can be transformed into a
conformal predictor, and so most of the arsenal of methods of modern machine
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learning can be brought to bear on the design of efficient conformal predictors.
We start the main part of the article, in Section 2, with the description of an

idealized predictor based on Kolmogorov’s algorithmic theory of randomness.
This ‘universal predictor’ produces the best possible hedged predictions but,
unfortunately, is noncomputable. We can, however, set ourselves the task of
approximating the universal predictor as well as possible.

In Section 3 we formally introduce the notion of conformal predictors and
state a simple result about their validity. In that section we also briefly describe
results of computer experiments demonstrating the methodology of conformal
prediction.

In Section 4 we consider an example demonstrating how conformal predictors
react to the violation of our model of the stochastic mechanism generating the
data (within the framework of the randomness assumption). If the model coin-
cides with the actual stochastic mechanism, we can construct an optimal confor-
mal predictor, which turns out to be almost as good as the Bayes-optimal confi-
dence predictor (the formal definitions will be given later). When the stochastic
mechanism significantly deviates from the model, conformal predictions remain
valid but their efficiency inevitably suffers. The Bayes-optimal predictor starts
producing very misleading results which superficially look as good as when the
model is correct.

In Section 5 we describe the ‘on-line’ setting of the problem of prediction,
and in Section 6 contrast it with the more standard ‘batch’ setting. The notion
of validity introduced in Section 3 is applicable to both settings, but in the on-
line setting it can be strengthened: we can now prove that the percentage of the
erroneous predictions will be close, with high probability, to a chosen confidence
level. For the batch setting, the stronger property of validity for conformal
predictors remains an empirical fact. In Section 6 we also discuss limitations of
the on-line setting and introduce new settings intermediate between on-line and
batch. To a large degree, conformal predictors still enjoy the stronger property
of validity for the intermediate settings.

Section 7 is devoted to the discussion of the difference between two kinds
of inference from empirical data, induction and transduction (emphasized by
Vladimir Vapnik [42, 43]). Conformal predictors belong to transduction, but
combining them with elements of induction can lead to a significant improve-
ment in their computational efficiency (Section 8).

We show how some popular methods of machine learning can be used as un-
derlying algorithms for hedged prediction. We do not give the full description
of these methods and refer the reader to the existing readily accessible descrip-
tions. This article is, however, self-contained in the sense that we explain all
features of the underlying algorithms that are used in hedging their predictions.
We hope that the information we provide will enable the reader to apply our
hedging techniques to their favourite machine-learning methods.
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2 Ideal hedged predictions

The most basic problem of machine learning is perhaps the following. We are
given a training set of examples

(x1, y1), . . . , (xl, yl), (1)

each example (xi, yi), i = 1, . . . , l, consisting of an object xi (typically, a vector
of attributes) and its label yi; the problem is to predict the label yl+1 of a
new object xl+1. Two important special cases are where the labels are known a
priori to belong to a relatively small finite set (the problem of classification) and
where the labels are allowed to be any real numbers (the problem of regression).

The usual goal of classification is to produce a prediction ŷl+1 that is likely to
coincide with the true label yl+1, and the usual goal of regression is to produce
a prediction ŷl+1 that is likely to be close to the true label yl+1. In the case
of classification, our goal will be to complement the prediction ŷl+1 with some
measure of its reliability. In the case of regression, we would like to have some
measure of accuracy and reliability of our prediction. There is a clear trade-
off between accuracy and reliability: we can improve the former by relaxing
the latter and vice versa. We are looking for algorithms that achieve the best
possible trade-off and for a measure that would quantify the achieved trade-off.

Let us start from the case of classification. The idea is to try every possible
label Y as a candidate for xl+1’s label and see how well the resulting sequence

(x1, y1), . . . , (xl, yl), (xl+1, Y ) (2)

conforms to the randomness assumption (if it does conform to this assumption,
we will say that it is ‘random’; this will be formalized later in this section). The
ideal case is where all Y s but one lead to sequences (2) that are not random;
we can then use the remaining Y as a confident prediction for yl+1.

In the case of regression, we can output the set of all Y s that lead to a
random sequence (2) as our ‘prediction set’. An obvious obstacle is that the set
of all possible Y s is infinite and so we cannot go through all the Y s explicitly,
but we will see in the next section that there are ways to overcome this difficulty.

We can see that the problem of hedged prediction is intimately connected
with the problem of testing randomness. Different versions of the universal
notion of randomness were defined by Kolmogorov, Martin-Löf and Levin (see,
e.g., [24]) based on the existence of universal Turing machines. Adapted to
our current setting, Martin-Löf’s definition is as follows. Let Z be the set of all
possible examples (assumed to be a measurable space); as each example consists
of an object and a label, Z = X×Y, where X is the set of all possible objects
and Y, |Y| > 1, is the set of all possible labels. We will use Z∗ as the notation
for all finite sequences of examples. A function t : Z∗ → [0, 1] is a randomness
test if

1. for all ε ∈ (0, 1), all n ∈ {1, 2, . . . } and all probability distributions P on
Z,

Pn {z ∈ Zn : t(z) ≤ ε} ≤ ε; (3)
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2. t is upper semicomputable.

The first condition means that the randomness test is required to be valid: if,
for example, we observe t(z) ≤ 1% for our data set z, then either the data set
was not generated independently from the same probability distribution P or a
rare (of probability at most 1%, under any P ) event has occurred. The second
condition means that we should be able to compute the test, in a weak sense (we
cannot require computability in the usual sense, since the universal test can only
be upper semicomputable: it can work forever to discover all patterns in the
data sequence that make it non-random). Martin-Löf (developing Kolmogorov’s
earlier ideas) proved that there exists a smallest, to within a constant factor,
randomness test.

Let us fix a smallest randomness test, call it the universal test, and call the
value it takes on a data sequence the randomness level of this sequence. A ran-
dom sequence is one whose randomness level is not small; this is rather informal,
but it is clear that for finite data sequences we cannot have a clear-cut division of
all sequences into random and non-random (like the one defined by Martin-Löf
[25] for infinite sequences). If t is a randomness test, not necessarily universal,
the value that it takes on a data sequence will be called the randomness level
detected by t.

Remark The word ‘random’ is used in (at least) two different senses in the
existing literature. In this article we need both but, luckily, the difference
does not matter within our current framework. First, randomness can refer to
the assumption that the examples are generated independently from the same
distribution; this is the origin of our ‘assumption of randomness’. Second, a
data sequence is said to be random with respect to a statistical model if the
universal test (a generalization of the notion of universal test as defined above)
does not detect any lack of conformity between the two. Since the only statistical
model we are interested in in this article is the one embodying the assumption
of randomness, we have a perfect agreement between the two senses.

Prediction with confidence and credibility

Once we have a randomness test t, universal or not, we can use it for hedged pre-
diction. There are two natural ways to package the results of such predictions:
in this subsection we will describe the way that can only be used in classification
problems. If the randomness test is not computable, we can imagine an oracle
answering questions about its values.

Given the training set (1) and the test object xl+1, we can act as follows:

• consider all possible values Y ∈ Y for the label yl+1;

• find the randomness level detected by t for every possible completion (2);

• predict the label Y corresponding to a completion with the largest ran-
domness level detected by t;
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• output as the confidence in this prediction one minus the second largest
randomness level detected by t;

• output as the credibility of this prediction the randomness level detected
by t of the output prediction Y (i.e., the largest randomness level detected
by t over all possible labels).

To understand the intuition behind confidence, let us tentatively choose a con-
ventional ‘significance level’, say 1%. (In the terminology of this article, this
corresponds to a ‘confidence level’ of 99%, i.e., 100% minus 1%.) If the confi-
dence in our prediction is 99% or more and the prediction is wrong, the actual
data sequence belongs to an a priori chosen set of probability at most 1% (the
set of all data sequences with randomness level detected by t not exceeding 1%).

Intuitively, low credibility means that either the training set is non-random
or the test object is not representative of the training set (say, in the training
set we have images of digits and the test object is that of a letter).

Confidence predictors

In regression problems, confidence, as defined in the previous subsection, is not
a useful quantity: it will typically be equal to 0. A better approach is to choose
a range of confidence levels 1− ε, and for each of them specify a prediction set
Γε ⊆ Y, the set of labels deemed possible at the confidence level 1− ε. We will
always consider nested prediction sets: Γε1 ⊆ Γε2 when ε1 ≥ ε2. A confidence
predictor is a function that maps each training set, each new object, and each
confidence level 1 − ε (formally, we allow ε to take any value in (0, 1)) to the
corresponding prediction set Γε. For the confidence predictor to be valid the
probability that the true label will fall outside the prediction set Γε should not
exceed ε, for each ε.

We might, for example, choose the confidence levels 99%, 95% and 80%, and
refer to the 99% prediction set Γ1% as the highly confident prediction, to the
95% prediction set Γ5% as the confident prediction, and to the 80% prediction
set Γ20% as the casual prediction. Figure 1 shows how such a family of prediction
sets might look in the case of a rectangular label space Y. The casual prediction
pinpoints the target quite well, but we know that this kind of prediction can
be wrong with probability 20%. The confident prediction is much bigger. If we
want to be highly confident (make a mistake only with probability 1%), we must
accept an even lower accuracy; there is even a completely different location that
we cannot rule out at this level of confidence.

Given a randomness test, again universal or not, we can define the corre-
sponding confidence predictor as follows: for any confidence level 1 − ε, the
corresponding prediction set consists of the Y s such that the randomness level
of the completion (2) detected by the test is greater than ε. The condition (3)
of validity for statistical tests implies that a confidence predictor defined in this
way is always valid.

The confidence predictor based on the universal test (the universal confidence
predictor) is an interesting object for mathematical investigation (see, e.g., [50],
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Figure 1: An example of a nested family of prediction sets (casual prediction in
black, confident prediction in dark grey, and highly confident prediction in light
grey).

Section 4), but it is not computable and so cannot be used in practice. Our goal
in the following sections will be to find computable approximations to it.

3 Conformal prediction

In the previous section we explained how randomness tests can be used for
prediction. The connection between testing and prediction is, of course, well
understood and have been discussed at length by philosophers [32] and statis-
ticians (see, e.g., the textbook [9], Section 7.5). In this section we will see how
some popular prediction algorithms can be transformed into randomness tests
and, therefore, be used for producing hedged predictions.

Let us start with the most successful recent development in machine learning,
support vector machines ([42, 43], with a key idea going back to the generalized
portrait method [44]). Suppose the label space is Y = {−1, 1} (we are dealing
with the binary classification problem). With each set of examples

(x1, y1), . . . , (xn, yn) (4)

one associates an optimization problem whose solution produces nonnegative
numbers α1, . . . , αn (‘Lagrange multipliers’). These numbers determine the
prediction rule used by the support vector machine (see [43], Chapter 10, for
details), but they also are interesting objects in their own right. Each αi,
i = 1, . . . , n, tells us how strange an element of the set (4) the corresponding
example (xi, yi) is. If αi = 0, (xi, yi) fits set (4) very well (in fact so well that
such examples are uninformative, and the support vector machine ignores them
when making predictions). The elements with αi > 0 are called support vectors,
and the large value of αi indicates that the corresponding (xi, yi) is an outlier.

Applying this procedure to the completion (2) in the role of set (4) (so that
n = l + 1), we can find the corresponding α1, . . . , αl+1. If Y is different from
the actual label yl+1, we expect (xl+1, Y ) to be an outlier in the set (2) and so
αl+1 be large as compared with α1, . . . , αl. A natural way to compare αl+1 to
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Table 1: Selected test examples from the USPS data set: the p-values of digits
(0–9), true and predicted labels, and confidence and credibility values.

0 1 2 3 4 5 6 7 8 9
true
label

pre-
diction

confi-
dence

credi-
bility

0.01% 0.11% 0.01% 0.01% 0.07% 0.01% 100% 0.01% 0.01% 0.01% 6 6 99.89% 100%
0.32% 0.38% 1.07% 0.67% 1.43% 0.67% 0.38% 0.33% 0.73% 0.78% 6 4 98.93% 1.43%
0.01% 0.27% 0.03% 0.04% 0.18% 0.01% 0.04% 0.01% 0.12% 100% 9 9 99.73% 100%

the other αs is to look at the ratio

pY :=
|{i = 1, . . . , l + 1 : αi ≥ αl+1}|

l + 1
, (5)

which we call the p-value associated with the possible label Y for xl+1. In words,
the p-value is the proportion of the αs which are at least as large as the last α.

The methodology of support vector machines (as described in [42, 43]) is
directly applicable only to the binary classification problems, but the general
case can be reduced to the binary case by the standard ‘one-against-one’ or
‘one-against-the-rest’ procedures. This allows us to define the strangeness values
α1, . . . , αl+1 for general classification problems (see [51], p. 59, for details), which
in turn determine the p-values (5).

The function that assigns to each sequence (2) the corresponding p-value,
defined by expression (5), is a randomness test (this will follow from Theorem
1 stated in Section 5 below). Therefore, the p-values, which are our approxima-
tions to the corresponding randomness levels, can be used for hedged prediction
as described in the previous section. For example, in the case of binary classi-
fication, if the p-value p−1 is small while p1 is not small, we can predict 1 with
confidence 1 − p−1 and credibility p1. Typical credibility will be 1: for most
data sets the percentage of support vectors is small ([43], Chapter 12), and so
we can expect αl+1 = 0 when Y = yl+1.

Remark When the order of examples is irrelevant, we refer to the data set (4)
as a set, although as a mathematical object it is a multiset rather than a set
since it can contain several copies of the same example. We will continue to
use this informal terminology (to be completely accurate, we would have to say
‘data multiset’ instead of ‘data set’ !)

Table 1 illustrates the results of hedged prediction for a popular data set of
hand-written digits called the USPS data set [23]. The data set contains 9298
digits represented as a 16 × 16 matrix of pixels; it is divided into a training
set of size 7291 and a test set of size 2007. For several test examples the
table shows the p-values for each possible label, the actual label, the predicted
label, confidence, and credibility, computed using the support vector method
with the polynomial kernel of degree 5. To interpret the numbers in this table,
remember that high (i.e., close to 100%) confidence means that all labels except
the predicted one are unlikely. If, say, the first example were predicted wrongly,
this would mean that a rare event (of probability less than 1%) had occurred;
therefore, we expect the prediction to be correct (which it is). In the case of the
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second example, confidence is also quite high (more than 95%), but we can see
that the credibility is low (less than 5%). From the confidence we can conclude
that the labels other than 4 are excluded at level 5%, but the label 4 itself is also
excluded at the level 5%. This shows that the prediction algorithm was unable
to extract from the training set enough information to allow us to confidently
classify this example: the strangeness of the labels different from 4 may be due
to the fact that the object itself is strange; perhaps the test example is very
different from all examples in the training set. Unsurprisingly, the prediction
for the second example is wrong.

In general, high confidence shows that all alternatives to the predicted label
are unlikely. Low credibility means that the whole situation is suspect; as we
have already mentioned, we will obtain a very low credibility if the new example
is a letter (whereas all training examples are digits). Credibility will also be low
if the new example is a digit written in an unusual way. Notice that typically
credibility will not be low provided the data set was generated independently
from the same distribution: the probability that credibility will not exceed some
threshold ε (such as 1%) is at most ε. In summary, we can trust a prediction if
(1) the confidence is close to 100% and (2) the credibility is not low (say, is not
less than 5%).

Many other prediction algorithms can be used as underlying algorithms for
hedged prediction. For example, we can use the nearest neighbours technique
to associate

αi :=

∑k
j=1 d+

ij∑k
j=1 d−ij

, i = 1, . . . , n, (6)

with the elements (xi, yi) of the set (4), where d+
ij is the jth shortest distance

from xi to other objects labelled in the same way as xi, and d−ij is the jth short-
est distance from xi to the objects labelled differently from xi; the parameter
k ∈ {1, 2, . . . } in Equation (6) is the number of nearest neighbours taken into
account. The distances can be computed in a feature space (that is, the distance
between x ∈ X and x′ ∈ X can be understood as ‖F (x)− F (x′)‖, F mapping
the object space X into a feature, typically Hilbert, space), and so definition
(6) can also be used with the kernel nearest neighbours.

The intuition behind Equation (6) is as follows: a typical object xi labelled
by, say, y will tend to be surrounded by other objects labelled by y; and if this
is the case, the corresponding αi will be small. In the untypical case that there
are objects whose labels are different from y nearer than objects labelled y, αi

will become larger. Therefore, the αs reflect the strangeness of examples.
The p-values computed from Equation (6) can again be used for hedged

prediction. It is a general empirical fact that the accuracy and reliability of the
hedged predictions are in line with the error rate of the underlying algorithm.
For example, in the case of the USPS data set, the 1-nearest neighbour algorithm
(i.e., the one with k = 1) achieves the error rate of 2.2%, and the hedged
predictions based on Equation (6) are highly confident (achieve confidence of at
least 99%) for more than 95% of the test examples.
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General definition

The general notion of conformal predictor can be defined as follows. A noncon-
formity measure is a function that assigns to every data sequence (4) a sequence
of numbers α1, . . . , αn, called nonconformity scores, in such a way that inter-
changing any two examples (xi, yi) and (xj , yj) leads to the interchange of the
corresponding nonconformity scores αi and αj (with all other nonconformity
scores unaffected). The corresponding conformal predictor maps each data set
(1), l = 0, 1, . . ., each new object xl+1, and each confidence level 1 − ε ∈ (0, 1)
to the prediction set

Γε (x1, y1, . . . , xl, yl, xl+1) := {Y ∈ Y : pY > ε} , (7)

where pY are defined by Equation (5) with α1, . . . , αl+1 being the nonconformity
scores corresponding to the data sequence (2).

We have already remarked that associating with each completion (2) the
p-value (5) gives a randomness test; this is true in general. This implies that
for each l the probability of the event

yl+1 ∈ Γε (x1, y1, . . . , xl, yl, xl+1)

is at least 1− ε.
This definition works for both classification and regression, but in the case

of classification we can summarize the prediction sets (7) by two numbers: the
confidence

sup {1− ε : |Γε| ≤ 1} (8)

and the credibility
inf {ε : |Γε| = 0} . (9)

Computationally efficient regression

As we have already mentioned, the algorithms described so far cannot be ap-
plied directly in the case of regression, even if the randomness test is efficiently
computable: now we cannot consider all possible values Y for yl+1 since there
are infinitely many of them. However, there might still be computationally ef-
ficient ways to find the prediction sets Γε. The idea is that if αi are defined as
the residuals

αi := |yi − fY (xi)| (10)

where fY : X → R is a regression function fitted to the completed data set (2),
then αi may have a simple expression in terms of Y , leading to an efficient way
of computing the prediction sets (via Equations (5) and (7)). This idea was
implemented in [28] in the case where fY is found from the ridge regression,
or kernel ridge regression, procedure, with the resulting algorithm of hedged
prediction called the ridge regression confidence machine. For a much fuller
description of the ridge regression confidence machine (and its modifications in
the case where the simple residuals (10) are replaced by the fancier ‘deleted’ or
‘studentized’ residuals) see [51], Section 2.3.
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4 Bayesian approach to conformal prediction

Bayesian methods have become very popular in both machine learning and
statistics thanks to their power and versatility, and in this section we will see
how Bayesian ideas can be used for designing efficient conformal predictors. We
will only describe results of computer experiments (following [26]) with artificial
data sets, since for real-world data sets there is no way to make sure that the
Bayesian assumption is satisfied.

Suppose X = Rp (each object is a vector of p real-valued attributes) and our
model of the data-generating mechanism is

yi = w · xi + ξi, i = 1, 2, . . . , (11)

where ξi are independent standard Gaussian random variables and the weight
vector w ∈ Rp is distributed as N(0, (1/a)Ip) (we use the notation Ip for the
unit p× p matrix and N(0, A) for the p-dimensional Gaussian distribution with
mean 0 and covariance matrix A); a is a positive constant. The actual data-
generating mechanism used in our experiments will correspond to this model
with a set to 1.

Under the model (11) the best (in the mean-square sense) fit to a data set
(4) is provided by the ridge regression procedure with parameter a (for details,
see, e.g., [51], Section 10.3). Using the residuals (10) with fY found by ridge
regression with parameter a leads to an efficient conformal predictor which will
be referred to as the ridge regression confidence machine with parameter a.
Each prediction set output by the ridge regression confidence machine will be
replaced by its convex hull, the corresponding prediction interval.

To test the validity and efficiency of the ridge regression confidence machine
the following procedure was used. Ten times a vector w ∈ R5 was independently
generated from the distribution N(0, I5). For each of the 10 values of w, 100
training objects and 100 test objects were independently generated from the
uniform distribution on [−10, 10]5 and for each object x its label y was generated
as w · x + ξ, with all the ξ standard Gaussian and independent. For each of the
1000 test objects and each confidence level 1 − ε the prediction set Γε for its
label was found from the corresponding training set using the ridge regression
confidence machine with parameter a = 1. The solid line in Figure 2 shows the
confidence level against the percentage of test examples whose labels were not
covered by the corresponding prediction intervals at that confidence level. Since
conformal predictors are always valid, the percentage outside the prediction
interval should never exceed 100 minus the confidence level, up to statistical
fluctuations, and this is confirmed by the picture.

A natural measure of efficiency of confidence predictors is the mean width
of their prediction intervals, at different confidence levels: the algorithm is the
more efficient the narrower prediction intervals it produces. The solid line in
Figure 3 shows the confidence level against the mean (over all test examples)
width of the prediction intervals at that confidence level.

Since we know the data-generating mechanism, the approach via conformal
prediction appears somewhat roundabout: for each test object we could instead
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Figure 2: Validity for the ridge regression confidence machine.
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Figure 3: Efficiency for the ridge regression confidence machine.
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find the conditional probability distribution of its label, which is Gaussian, and
output as the prediction set Γε the shortest (i.e., centred at the mean of the
conditional distribution) interval of conditional probability 1 − ε. Figures 4
and 5 are the analogues of Figures 2 and 3 for this Bayes-optimal confidence
predictor. The solid line in Figure 4 demonstrates the validity of the Bayes-
optimal confidence predictor.

What is interesting is that the solid lines in Figures 5 and 3 look exactly
the same, taking account of the different scales of the vertical axes. The ridge
regression confidence machine appears as good as the Bayes-optimal predictor.
(This is a general phenomenon; it is also illustrated, in the case of classifica-
tion, by the construction in Section 3.3 of [51] of a conformal predictor that is
asymptotically as good as the Bayes-optimal confidence predictor.)

The similarity between the two algorithms disappears when they are given
wrong values for a. For example, let us see what happens if we tell the algorithms
that the expected value of ‖w‖ is just 1% of what it really is (this corresponds
to taking a = 10000). The ridge regression confidence machine stays valid (see
the dashed line in Figure 2), but its efficiency deteriorates (the dashed line in
Figure 3). The efficiency of the Bayes-optimal confidence predictor (the dashed
line in Figure 5) is hardly affected, but its predictions become invalid (the
dashed line in Figure 4 deviates significantly from the diagonal, especially for
the most important large confidence levels: e.g., only about 15% of labels fall
within the 90% prediction intervals). The worst that can happen to the ridge
regression confidence machine is that its predictions will become useless (but at
least harmless), whereas the Bayes-optimal predictions can become misleading.

Figures 2–5 also show the graphs for the intermediate value a = 1000. Sim-
ilar results but for different data sets are also given in [51], Section 10.3. A
general scheme of Bayes-type conformal prediction is described in [51], pp. 102–
103.

5 On-line prediction

We know from Section 3 that conformal predictors are valid in the sense that
the probability of error

yl+1 /∈ Γε (x1, y1, . . . xl, yl, xl+1) (12)

at confidence level 1 − ε never exceeds ε. The word ‘probability’ means ‘un-
conditional probability’ here: the frequentist meaning of the statement that the
probability of event (12) does not exceed ε is that, if we repeatedly generate
many sequences

x1, y1, . . . , xl, yl, xl+1, yl+1,

the fraction of them satisfying Equation (12) will be at most ε, to within sta-
tistical fluctuations. To say that we are controlling the number of errors would
be an exaggeration because of the artificial character of this scheme of repeat-
edly generating a new training set and a new test example. Can we say that
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Figure 4: Validity for the Bayes-optimal confidence predictor.
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Figure 5: Efficiency for the Bayes-optimal confidence predictor.
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the confidence level 1 − ε translates into a bound on the number of errors for
a natural learning protocol? In this section we show that the answer is ‘yes’
for the popular on-line learning protocol, and in the next section we will see to
what degree this carries over to other protocols.

In on-line learning the examples are presented one by one. Each time, we
observe the object and predict its label. Then we observe the label and go on
to the next example. We start by observing the first object x1 and predicting
its label y1. Then we observe y1 and the second object x2, and predict its
label y2. And so on. At the nth step, we have observed the previous examples
(x1, y1), . . . , (xn−1, yn−1) and the new object xn, and our task is to predict yn.
The quality of our predictions should improve as we accumulate more and more
old examples. This is the sense in which we are learning.

Our prediction for yn is a nested family of prediction sets Γε
n ⊆ Y, ε ∈ (0, 1).

The process of prediction can be summarized by the following protocol:

On-line prediction protocol

Errε
0 := 0, ε ∈ (0, 1);

Multε
0 := 0, ε ∈ (0, 1);

Empε
0 := 0, ε ∈ (0, 1);

FOR n = 1, 2, . . .:
Reality outputs xn ∈ X;
Predictor outputs Γε

n ⊆ Y for all ε ∈ (0, 1);
Reality outputs yn ∈ Y;

errε
n :=

{
1 if yn /∈ Γε

n

0 otherwise, ε ∈ (0, 1);

Errε
n := Errε

n−1 +errε
n, ε ∈ (0, 1);

multε
n :=

{
1 if |Γε

n| > 1
0 otherwise, ε ∈ (0, 1);

Multε
n := Multε

n−1 +multε
n, ε ∈ (0, 1);

empε
n :=

{
1 if |Γε

n| = 0
0 otherwise, ε ∈ (0, 1);

Empε
n := Empε

n−1 +empε
n, ε ∈ (0, 1)

END FOR.

As we said, the family Γε
n is assumed nested: Γε1

n ⊆ Γε2
n when ε1 ≥ ε2. In this

protocol we also record the cumulative numbers Errε
n of erroneous prediction

sets, Multε
n of multiple prediction sets (i.e., prediction sets containing more than

one label) and Empε
n of empty prediction sets at each confidence level 1− ε. We

will discuss the significance of each of these numbers in turn.
The number of erroneous predictions is a measure of validity of our confi-

dence predictors: we would like to have Errε
n ≤ εn, up to statistical fluctuations.

In Figure 6 we can see the lines n 7→ Errε
n for one particular conformal predictor

and for three confidence levels 1− ε: the solid line for 99%, the dash-dot line for
95%, and the dotted line for 80%. The number of errors made grows linearly,
and the slope is approximately 20% for the confidence level 80%, 5% for the
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Figure 6: Cumulative numbers of errors for a conformal predictor (the 1-nearest
neighbour conformal predictor) run in the on-line mode on the USPS data set
(9298 hand-written digits, randomly permuted) at the confidence levels 80%,
95% and 99%.

confidence level 95%, and 1% for the confidence level 99%. We will see below
that this is not accidental.

The number of multiple predictions Multε
n is a useful measure of efficiency

in the case of classification: we would like as many as possible of our predictions
to be singletons. Figure 7 shows the cumulative numbers of errors n 7→ Err2.5%

n

(solid line) and multiple predictions n 7→ Mult2.5%
n (dotted line) at the fixed

confidence level 97.5%. We can see that out of approximately 10,000 predictions
about 250 (approximately 2.5%) were errors and about 300 (approximately 3%)
were multiple predictions.

We can see that by choosing ε we are able to control the number of errors.
For small ε (relative to the difficulty of the data set) this might lead to the
need sometimes to give multiple predictions. On the other hand, for larger ε
this might lead to empty predictions at some steps, as can be seen from the
bottom right corner of Figure 7: when the predictor ceases to make multiple
predictions it starts making occasional empty predictions (the dash-dot line).
An empty prediction is a warning that the object to be predicted is unusual
(the credibility, as defined in Section 2, is ε or less).

It would be a mistake to concentrate exclusively on one confidence level
1 − ε. If the prediction Γε

n is empty, this does not mean that we cannot make
any prediction at all: we should just shift our attention to other confidence
levels (perhaps look at the range of ε for which Γε

n is a singleton). Likewise, Γε
n

being multiple does not mean that all labels in Γε
n are equally likely: slightly

increasing ε might lead to the removal of some labels. Of course, taking in the
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Figure 7: The on-line performance of the 1-nearest neighbour conformal predic-
tor at the confidence level 97.5% on the USPS data set (randomly permuted).

Table 2: A selected test example from a data set of hospital records of patients
who suffered acute abdominal pain [15]: the p-values for the nine possible di-
agnostic groups (appendicitis APP, diverticulitis DIV, perforated peptic ulcer
PPU, non-specific abdominal pain NAP, cholecystitis CHO, intestinal obstruc-
tion INO, pancreatitis PAN, renal colic RCO, dyspepsia DYS) and the true
label.
APP DIV PPU NAP CHO INO PAN RCO DYS true label
1.23% 0.36% 0.16% 2.83% 5.72% 0.89% 1.37% 0.48% 80.56% DYS

continuum of predictions sets, for all ε ∈ (0, 1), might be too difficult or tiresome
for a human mind, and concentrating on a few conventional levels, as in Figure
1, might be a reasonable compromise.

For example, Table 2 gives the p-values for different kinds of abdominal pain
obtained for a specific patient based on his symptoms. We can see that at the
confidence level 95% the prediction set is multiple, {cholecystitis, dyspepsia}.
When we relax the confidence level to 90%, the prediction set narrows down to
{dyspepsia} (the singleton containing only the true label); on the other hand, at
the confidence level 99% the prediction set widens to {appendicitis, non-specific
abdominal pain, cholecystitis, pancreatitis, dyspepsia}. Such detailed confi-
dence information, in combination with the property of validity, is especially
valuable in medicine (and some of the first applications of conformal predictors
have been to the fields of medicine and bioinformatics: see, e.g., [3, 35]).

In the case of regression, we will usually have Multε
n = n and Empε

n = 0, and
so these are not useful measures of efficiency. Better measures, such as the ones
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used in the previous section, would, for example, take into account the widths
of the prediction intervals.

Theoretical analysis

Looking at Figures 6 and 7 we might be tempted to guess that the probability
of error at each step of the on-line protocol is ε and that errors are made inde-
pendently at different steps. This is not literally true, as a closer examination of
the bottom left corner of Figure 7 reveals. It, however, becomes true (as noticed
in [48]) if the p-values (5) are redefined as

pY :=
|{i : αi > αl+1}|+ η |{i : αi = αl+1}|

l + 1
, (13)

where i ranges over {1, . . . , l + 1} and η ∈ [0, 1] is generated randomly from the
uniform distribution on [0, 1] (the ηs should be independent between themselves
and of everything else; in practice they are produced by pseudo-random number
generators). The only difference between Equations (5) and (13) is that the
expression (13) takes more care in breaking the ties αi = αl+1. Replacing
Equation (5) by Equation (13) in the definition of conformal predictor we obtain
the notion of smoothed conformal predictor.

The validity property for smoothed conformal predictors can now be stated
as follows.

Theorem 1 Suppose the examples

(x1, y1), (x2, y2), . . .

are generated independently from the same probability distribution. For any
smoothed conformal predictor working in the on-line prediction protocol and any
confidence level 1 − ε, the random variables errε

1, err
ε
2, . . . are independent and

take value 1 with probability ε.

Combining Theorem 1 with the strong law of large numbers we can see that

lim
n→∞

Errε
n

n
= ε

holds with probability one for smoothed conformal predictors. (They are ‘well
calibrated’.) Since the number of errors made by a conformal predictor never
exceeds the number of errors made by the corresponding smoothed conformal
predictor,

lim sup
n→∞

Errε
n

n
≤ ε

holds with probability one for conformal predictors. (They are ‘conservatively
well calibrated’.)
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6 Slow teachers, lazy teachers, and the batch
setting

In the pure on-line setting, considered in the previous section, we get an imme-
diate feedback (the true label) for every example that we predict. This makes
practical applications of this scenario questionable. Imagine, for example, a
mail sorting centre using an on-line prediction algorithm for zip code recogni-
tion; suppose the feedback about the true label comes from a human ‘teacher’.
If the feedback is given for every object xi, there is no point in having the pre-
diction algorithm: we can just as well use the label provided by the teacher.
It would help if the prediction algorithm could still work well, in particular be
valid, if only every, say, tenth object were classified by a human teacher (the sce-
nario of ‘lazy’ teachers). Alternatively, even if the prediction algorithm requires
the knowledge of all labels, it might still be useful if the labels were allowed to
be given not immediately but with a delay (‘slow’ teachers). In our mail sorting
example, such a delay might make sure that we hear from local post offices
about any mistakes made before giving a feedback to the algorithm.

In the pure on-line protocol we had validity in the strongest possible sense:
at each confidence level 1 − ε each smoothed conformal predictor made errors
independently with probability ε. In the case of weaker teachers (as usual, we
are using the word ‘teacher’ in the general sense of the entity providing the
feedback, called Reality in the previous section), we have to accept a weaker
notion of validity. Suppose the predictor receives a feedback from the teacher
at the end of steps n1, n2, . . ., n1 < n2 < · · · ; the feedback is the label of one
of the objects that the predictor has already seen (and predicted). This scheme
[33] covers both slow and lazy teachers (as well as teachers who are both slow
and lazy). It was proved in [29] (see also [51], Theorem 4.2) that the smoothed
conformal predictors (using only the examples with known labels) remain valid
in the sense

∀ε ∈ (0, 1) : Errε
n /n → ε (as n →∞) in probability

if and only if nk/nk−1 → 1 as k → ∞. In other words, the validity in the
sense of convergence in probability holds if and only if the growth rate of nk is
subexponential. (This condition is amply satisfied for our example of a teacher
giving feedback for every tenth object.)

The most standard batch setting of the problem of prediction is in one respect
even more demanding than our scenarios of weak teachers. In this setting we
are given a training set (1) and our goal is to predict the labels given the objects
in the test set

(xl+1, yl+1), . . . , (xl+k, yl+k). (14)

This can be interpreted as a finite-horizon version of the lazy-teacher setting:
no labels are returned after step l. Computer experiments (see, e.g., Figure 8)
show that approximate validity still holds; for related theoretical results, see
[51], Section 4.4.
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Figure 8: Cumulative numbers of errors made on the test set by the 1-nearest
neighbour conformal predictor used in the batch mode on the USPS data set
(randomly permuted and split into a training set of size 7291 and a test set of
size 2007) at the confidence levels 80%, 95% and 99%.

Training set Prediction

General rule

-
¡¡

¡¡µ @@

@@RTransduction
ε

Induction
δ

Deduction
ε

Figure 9: Inductive and transductive prediction.

7 Induction and transduction

Vapnik’s [42, 43] distinction between induction and transduction, as applied
to the problem of prediction, is depicted in Figure 9. In inductive prediction
we first move from examples in hand to some more or less general rule, which
we might call a prediction or decision rule, a model, or a theory; this is the
inductive step. When presented with a new object, we derive a prediction from
the general rule; this is the deductive step. In transductive prediction, we take
a shortcut, moving from the old examples directly to the prediction about the
new object.

Typical examples of the inductive step are estimating parameters in statistics
and finding an approximating function in statistical learning theory. Examples
of transductive prediction are estimation of future observations in statistics ([9],
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Section 7.5, [38]) and nearest neighbours algorithms in machine learning.
In the case of simple (i.e., traditional, not hedged) predictions the distinc-

tion between induction and transduction is less than crisp. A method for doing
transduction, in the simplest setting of predicting one label, is a method for pre-
dicting yl+1 from training set (1) and xl+1. Such a method gives a prediction for
any object that might be presented as xl+1, and so it defines, at least implicitly,
a rule, which might be extracted from the training set (1) (induction), stored,
and then subsequently applied to xl+1 to predict yl+1 (deduction). So any real
distinction is really at a practical and computational level: do we extract and
store the general rule or not?

For hedged predictions the difference between induction and transduction
goes deeper. We will typically want different notions of hedged prediction in
the two frameworks. Mathematical results about induction usually involve two
parameters, often denoted ε (the desired accuracy of the prediction rule) and δ
(the probability of failing to achieve the accuracy of ε), whereas results about
transduction involve only one parameter, which we denote ε in this article (the
probability of error we are willing to tolerate); see Figure 9. For a review of
inductive prediction from this point of view, see [51], Section 10.1.

8 Inductive conformal predictors

Our approach to prediction is thoroughly transductive, and this is what makes
valid and efficient hedged prediction possible. In this section we will see, how-
ever, that there is also room for an element of induction in conformal prediction.

Let us take a closer look at the process of conformal prediction, as described
in Section 3. Suppose we are given a training set (1) and the objects in a test
set (14), and our goal is to predict the label of each test object. If we want to
use the conformal predictor based on the support vector method, as described
in Section 3, we will have to find the set of the Lagrange multipliers for each
test object and for each potential label Y that can be assigned to it. This would
involve solving k |Y| essentially independent optimization problems. Using the
nearest neighbours approach is typically more computationally efficient, but
even it is much slower than the following procedure, suggested in [30, 31].

Suppose we have an inductive algorithm which, given a training set (1) and
a new object x outputs a prediction ŷ for x’s label y. Fix some measure ∆(y, ŷ)
of difference between y and ŷ. The procedure is:

1. Divide the original training set (1) into two subsets: the proper training set
(x1, y1), . . . , (xm, ym) and the calibration set (xm+1, ym+1), . . . , (xl, yl).

2. Construct a prediction rule F from the proper training set.

3. Compute the nonconformity score

αi := ∆(yi, F (xi)), i = m + 1, . . . , l,

for each example in the calibration set.
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4. For every test object xi, i = l + 1, . . . , l + k, do the following:

(a) for every possible label Y ∈ Y compute the nonconformity score
αi := ∆(Y, F (xi)) and the p-value

pY :=
#{j ∈ {m + 1, . . . , l, i} : αj ≥ αi}

l −m + 1
;

(b) output the prediction set Γε (x1, y1, . . . , xl, yl, xi) given by the right-
hand side of Equation (7).

This is a special case of ‘inductive conformal predictors’, as defined in [51],
Section 4.1. In the case of classification, of course, we could package the p-
values as a simple prediction complemented with confidence (8) and credibility
(9).

Inductive conformal predictors are valid in the sense that the probability of
error

yi /∈ Γε (x1, y1, . . . xl, yl, xi)

(i = l + 1, . . . , l + k, ε ∈ (0, 1)) never exceeds ε (cf. (12)). The on-line version of
inductive conformal predictors, with a stronger notion of validity, is described
in [48] and [51] (Section 4.1).

The main advantage of inductive conformal predictors is their computa-
tional efficiency: the bulk of the computations is performed only once, and
what remains to do for each test object and each potential label is to apply the
prediction rule found at the inductive step, to apply ∆ to find the nonconfor-
mity score α for these object and label, and to find the position of α among
the nonconformity scores of the calibration examples. The main disadvantage
is a possible loss of the prediction efficiency: for conformal predictors, we can
effectively use the whole training set as both the proper training set and the
calibration set.

9 Conclusion

This article shows how many machine-learning techniques can be complemented
with provably valid measures of accuracy and reliability. We explained briefly
how this can be done for support vector machines, nearest neighbours algorithms
and the ridge regression procedure, but the principle is general: virtually any (we
are not aware of exceptions) successful prediction technique designed to work
under the randomness assumption can be used to produce equally successful
hedged predictions. Further examples are given in our recent book [51] (joint
with Glenn Shafer), where we construct conformal predictors and inductive
conformal predictors based on nearest neighbours regression, logistic regression,
bootstrap, decision trees, boosting, and neural networks; general schemes for
constructing conformal predictors and inductive conformal predictors are given
on pp. 28–29 and on pp. 99–100 of [51], respectively. Replacing the original
simple predictions with hedged predictions enables us to control the number of
errors made by appropriately choosing the confidence level.
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A Discussion

Alexey Chervonenkis
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A large variety of machine-learning algorithms are now developed and applied
in different areas of science and industry. This new technique has a typical
drawback, that there is no confidence measure for prediction of output value for
particular new objects. The main idea of the article is to look over all possible la-
bellings of a new object and evaluate strangeness of each labelling in comparison
to the labelling of objects presented in the training set. The problem is to find an
appropriate measure of strangeness. Initially the authors try to apply the ideas
of Kolmogorov complexity to estimate the strangeness of labelling. But firstly
this complexity is not computable, then it is defined up to an additive constant,
and finally it is applied to the total sequence of objects, but not to one partic-
ular object. So the authors came to another idea (still induced by Kolmogorov
complexity). Based on particular machine-learning algorithm it is possible to
find a reasonable measure of an object (with its labelling) strangeness. For
regression (or ridge regression) it could be the absolute difference between re-
gression result and real output value: the larger is the difference, the stranger is
the object. In the SVM approach to pattern recognition it could be the weights
of support vectors: the larger is the weight of a vector, the more doubtful seems
its labelling, and similar measures of strangeness may be proposed for other
algorithms. So the protocol is as follows: look through all possible labellings
of a new object. For each labelling add the object to the training set. Ap-
ply the machine-learning algorithm and rank the objects by their measure of
strangeness. Estimate credibility of this labelling as (one minus) the ratio of
the number of objects in the set stranger than the new one to the total number
of objects in the set. This approach seems to be new and powerful. Its main
advantage is that it is non-parametric and based only on the i.i.d. assumption.
In comparison to the Bayesian approach, no prior distribution is used. The
main theoretical result is the proof of validity of proposed conformal predictors.
It means that on average conformal predictors never overrate the accuracy and
reliability of their predictions. The second result is that asymptotically the rel-
ative number of cases when the real output value is within confidence interval
converges to the average value of conformal predictors. Software implementing
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the proposed technique is now applied to a large variety of practical problems.
Still I can mention two drawbacks of the article.

1. There is no theoretical discussion on the problem how far proposed confi-
dence intervals are optimal for particular objects. In general it is possible
that for some objects the interval is too large, for other it is too small,
but on average validity in terms of the article is true. Optimality can
be proved for the Bayesian approach, though it needs prior distribution.
Experimental results of comparison of proposed conformal predictors with
the Bayesian approach for particular problem is presented in the article,
and it is shown that the results are quite close to the optimal ones, but
some theoretical discussion seems to be useful.

2. In pattern recognition problems it is proposed to measure confidence as
‘one minus the second largest randomness level detected’. It seems better
to use as the measure the difference between the largest and the second
largest value. For instance, in Table 1, line 3, we see that for true label 6,
credibility is 1.43%, while confidence is 98.93%. If we take the difference
between the largest and the second largest value, confidence becomes very
low, and really in this case the prediction is false.

In total the article summarizes the whole cycle of works by the authors on
conformal predictors and its presentation to the Computer Journal can be only
greeted.

Philip M. Long

Google Inc.

plong@google.com

Conformal prediction is a beautiful and powerful idea. It enables the design of
useful methods for assigning confidence to the predictions made by machine-
learning algorithms, and also enables clean and relevant theoretical analyses.

It appears that conformal prediction may have a role to play in reinforce-
ment learning, where an agent must learn from the consequences of its actions.
In reinforcement learning settings, the behaviour of the learner affects the infor-
mation its receives, so there is a tension between taking actions to gather useful
information (exploration), and taking actions that are profitable right now (ex-
ploitation). When an agent can be confident about how to behave, exploration
is less advisable. A formalization of this idea has already been exploited to
strengthen theoretical guarantees for some reinforcement learning problems [1];
it seems that conformal prediction might be a useful tool for analyses like this.

The authors advanced a view of conformal prediction methods as randomness
tests. On the one hand, there is a proof that some conformal predictors are
randomness tests. On the other hand, a procedure that satisfies the formal
requirement of what is termed a randomness test might return scores that are
most closely associated with some other property of the distribution governing
all of the examples.
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For example, suppose Equation (5) from the article is applied with support
vector machines with the linear kernel, and the features are uniform random
boolean variables. If the class designation is the parity of the features, the
values of (5) should be expected to be less than if the class designation is the
value of the first feature, even if the data is i.i.d. for both sources.

Very roughly speaking, in many applications, one expects randomness be-
tween examples and structure within them. A randomness test only detects
the randomness between examples. It seems that much of the power of the
conformal predictors is derived from their ability to exploit structure in the
distribution generating the examples.

On the other hand, when a prospective class assignment is at odds with
structure found in earlier examples, one possibility is to blame the apparent
contradiction on the assertion the training examples were not representative.

Still, the parity example above suggests that effective conformal predictors
must be more than good randomness tests, even if the formal notion of what
has been termed a randomness test is useful for their analysis.

Whatever the source of the power, one thing that does seem clear is that
conformal prediction is a powerful tool.

Xiaohui Liu

Brunel University

Impact of hedging predictions on applications with high-
dimensional data

The authors are to be congratulated on their excellent discussions of the back-
ground in the area, their clear exposure of the inadequacies of current approaches
to analysing high-dimensional data, and their introduction of ground-breaking
methods for ‘hedging’ the predictions produced by existing machine-learning
methods. In this response, I would like to argue that one of the key issues for
widening the use of hedged predictions would be how to assist users with careful
interpretation and utilisation of the two confidence measures in the predictions.
I shall use the classification of high-dimensional DNA microarray data as an
example.

There has been a lot of work over the past few years on the use of various
supervised learning methods to build systems that could classify subjects with
or without a particular disease, or categorise genes exhibiting similar biological
functions, using the expression levels of genes which are typically in the range of
hundreds or thousands. Since algorithms for producing hedged predictions are
capable of giving an indication of not only how accurate but also how reliable
individual classifications are, they could provide biomedical scientists with a
nice way of quickly homing in on a small set of genes with sufficiently high
accuracy and reliability for further study.

But how should biologists choose the cut-off values for the two new mea-
sures to make that decision? If the values are set too high, we risk many false
negatives—interesting genes may escape our attention. If they are too low, we
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may see many false positives—biologists may have to study many more genes
than necessary, which can be costly since such a study may involve examining
things such as the sequences of suspect genes, transcription factors, protein-
protein interactions, related structural and functional information, etc., or even
conducting further biological experiments [37]. Of course it is also challenging
to address how to minimise the false positives and false negatives for any exist-
ing statistical confidence measure, but it would be crucial for practitioners to
gain as much help as possible when any new measures are introduced.

Recently we have suggested a method for identifying highly predictive genes
from a large number of prostate cancer and B-cell genes using a simple classifier
coupled with a feature selection and global search method as well as applying
data perturbation and cross-validation [45]. We will be keen to extend that
approach using the proposed methods to produce hedged predictions, and then
study the effects of using the two confidence measures for the same applications.

In short, the proposed methods for hedging predictions should provide prac-
titioners with further information and confidence. Key issues in exploiting their
full potentials in real-world applications include how one should effectively in-
terpret the confidence measures and utilise them for decision making in a given
situation, and how to build different types of conformal predicting tools to fa-
cilitate their use in diverse practical settings.

Sally McClean

University of Ulster

I would like to congratulate the authors on providing a very clear and insightful
discussion of their approach to providing measures of reliability and accuracy
for prediction in machine learning. This is undoubtedly an important area and
the tools developed here should prove invaluable in a variety of contexts.

I was intrigued by the authors’ concept of ‘strangeness’, as measured by the
αis. The examples given in the article seem very intuitive and also to perform
well. However, I wondered if there were a more principled way of designing
good measures of strangeness or should we just look for measures that are high
performing in terms of efficiency and computational complexity.

Zhiyuan Luo and Tony Bellotti

Computer Learning Research Centre,
Royal Holloway, University of London

This is a very stimulating article about the very important issue of making re-
liable decisions under uncertainty. We would like to discuss some applications
of conformal predictors to microarray gene expression classification for cancer
diagnosis and prognosis in our collaboration with Cancer Research UK Chil-
dren’s Cancer Group. Microarray technology allows us to take a sample of cells
and measure the abundance of mRNA associated with each gene, giving a level
of activity (expression) for each gene, expressed on a numeric scale. From the
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analysis of the microarray data, we can get insights into various diseases such
as cancer. Typically machine-learning methods are used for microarray gene
expression classification.

Most machine-learning algorithms such as the support vector machine [43]
provide only bare predictions, in their basic form. However, not knowing the
confidence of predictions makes it difficult to measure and control the risk of
error using a decision rule. This issue has been discussed by several authors.
Dawid [10] argues that many decisions can only be taken rationally when the
uncertain nature of the problem domain is taken into consideration. An example
of this is weather forecasting, where Probability of Precipitation forecasts are
commonly used, instead of simple bare predictions of rain or no rain. Korb [21]
argues that machine learning has traditionally emphasized performance mea-
sures that evaluate the amount of knowledge acquired, ignoring issues about
confidence in decisions. It is important that decision rules also provide meta-
knowledge regarding the limits of domain knowledge in order for us to use them
effectively with an understanding of risk of outcome. This is possible if we
provide a measure of confidence with predictions. In the medical domain, it is
important to be able to measure the risk of misdiagnosis or disease misclassifi-
cation, and if possible, to ensure low risk of error. Machine-learning algorithms
have been used to make predictions from microarrays, but without informa-
tion about the confidence in predictions. Confidence intervals can be given to
estimate true accuracy, using classical statistical methods, but in practice the
computed intervals are often too broad to be clear that the classification method
is reliable. This is due to the typically low sample size and high-dimensionality
of microarray data available for any one experiment. In particular, a study of
cross-validation for microarray classification using bare prediction has shown
high variance of results leading to inaccurate conclusions for small sample size
[4]. The problem of sample size is exacerbated in the case of leukaemia by the
large number of subtypes, which may mean that only a few samples are available
for training for some subtypes. In such circumstances, bare predictions made by
conventional algorithms must understandably be treated with caution. There-
fore, there is a need for a theoretical framework that will allow us to determine
more accurately the reliability of classification based on microarray data.

The conformal predictors provide a framework for constructing learning al-
gorithms that predict with confidence. Conformal predictors allow us to sup-
plement such predictions with a confidence level, assuring reliability, even for
small sample size. This approach is therefore particularly suitable for the clas-
sification of gene expression data. For traditional learning algorithms, usually
given as simple predictors, the focus has naturally been on improved accuracy.
For these algorithms, efficiency is fixed as all predictions are of one single class
label. In contrast, with conformal predictors, accuracy is controlled by a preset
confidence level and efficiency is variable and needs to be optimized. When
evaluating the performance of a learning algorithm, it is important to measure
error calibration as well as its accuracy. This has been a somewhat neglected
aspect of evaluation. The main benefit of conformal predictors is that calibra-
tion is controlled by the a priori confidence level. The challenge is to design
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nonconformity measures for the underlying learning algorithms to maximize
efficiency.

Another benefit of conformal predictors is that they can give a level of un-
certainty regarding each individual prediction in the form of a hedged region
prediction. In contrast the confidence interval supplies only a general estimate
for true accuracy for single class label predictions, therefore supplying no in-
formation regarding uncertainty for individual predictions. For many learning
problems, this may be important to distinguish those patients that are easier to
diagnose from others, in order to control risk for individual patients.

David Bell

Department of Computer Science,
Queen’s University Belfast, Belfast BT1 7NN

da.bell@qub.ac.uk

In data mining meaningful measures of validity and possible ways of using them
are always welcome. They can supplement more näıve, readily accessible quan-
tities. As in other aspects of computing, such as hashing or clustering, ‘Horses
for courses’ is the rule when looking for mining algorithms and the same applies
to measures of their ‘goodness’. Now there are two types of thinker according to
the philosopher A. Whitehead—‘simple-minded’ and ‘muddle-headed’. Neither
description is particularly flattering. Some abstract analysts looking for under-
standing and explanation tend to the first extreme, and some practical problem
solvers looking for pay-offs are towards the other end of the spectrum.

In data mining exchanges of ideas between the two types are common. For
example, Kolmogorov complexity is noncomputable, and some practitioners see
it as conceptually so rarefied that it is of little use. However, due not least to
the efforts of authors such as Alex Gammerman and Volodya Vovk, practical
value can accrue from the concept. More muddle-headed activity can also be
useful. Aeronautics has matured to a degree not yet registered in the emergence
of machine learning. Its pioneers had an interesting, muddle-headed way of
working. In the early days, brash enthusiasts made ‘wings’ and jumped off cliffs.
If something worked, the analysis/understanding/insights often came later, and
led to real progress.

The BCS Machine Intelligence Prize is in this spirit. It is awarded annually
for a live demonstration of Progress Towards Machine Intelligence—‘can-do’
system building by competitors—who might, incidentally, understand ‘hedging’
as something entirely more practical than its sense in our article, or at least
something to do with programming language theory or XML. Full understand-
ing often lags behind, but it would be better to have a nice balance between the
simple-minded and muddle-headed inputs. Using the words of P. Dawid, exper-
imentalist AI researchers who aim to produce programs with learning behaviour
like that of animals make ‘. . . valuable contributions going beyond those likely
to occur to a mindset constrained by probability theory or coding theory’ [11],
but progress will be held up if the foundations are not attended to.

27



Things are moving ahead in data mining. The simple-minded approach is
becoming less simple. Increased scope is being introduced; e.g., in the train-
ing/learning sequences, test labels can be explicitly related, and dependent pre-
diction can be beneficial even on i.i.d. data. Furthermore, M. Gell-Mann sug-
gests using ‘the length of the shortest message that will describe a system. . .
employing language, knowledge, and understanding that both parties share’ in-
stead of Kolmogorov complexity [16]. Now some scientists resist, and ‘share. . .
a degree of embarrassment’ at, including consciousness at the most fundamen-
tal levels—but, for example, it ‘remains a logical possibility that it is the act
of consciousness which is ultimately responsible for the reduction of the wave
packet’ in quantum mechanics [2].

In muddle-headed games of prediction, muddiness as defined by J. Weng
[56] is prevalent, and they often have in-built structure. There are emerging
paradigms of learning, e.g., in robotics and video mining. For example, second-
order learning, or learning about learning, is evident when a predator watches
a potential prey as it adapts, to try to get an advantage. Here, because of the
inherent structuring in the data, we have both inductive and transductive learn-
ing. The inductive learning and inference approach is useful when an overview
model of the problem is required. But such models are difficult to create and
update, and they are often not needed. A long time ago, J. S. Mill [27] wrote
‘An induction from particulars to generals, followed by a syllogistic process from
those generals to other particulars. . . is not a form in which we must reason. . . ’.
(Muddle-headed?) transductive arguing from particulars to particulars is often
better. To combine transductive and inductive reasoning for robotics, video
mining and other applications, we focus on rough sets methods—for associative
learning and multi-knowledge. Adaptability, representation and noise handling
are key issues. Hopefully we can adopt some of the measures presented here.

David L. Dowe

Faculty of IT, Monash University, Clayton, Victoria 3800, Australia

dld@bruce.csse.monash.edu.au

Profs Gammerman and Vovk advocate a welcome preference for the generality
of the (universal) Turing machine (TM) (and Kolmogorov complexity) approach
over the conventional Bayesian approach (which usually assumes ‘a parametric
statistical model, sometimes complemented with a prior distribution on the
parameter space’) to (inference and) prediction. My comments below are based
on my best understanding.

There are many parallels between the authors’ approach (to prediction) and
the Minimum Message Length (MML) approach (to inference) of Wallace et al.
[53, 54, 55, 52], and also some apparent distinctions.

The authors mention randomness tests and that ‘Martin-Löf (developing
Kolmogorov’s earlier ideas) proved that there exists a smallest, to within a
constant factor, randomness test’. This parallels the formal relationship between
Kolmogorov complexity, (universal) TMs and (Strict) MML [55] and the choice
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(within a small constant) ([52], Section 2.3.12) of a simplest UTM as a way of
modelling prior ignorance.

In Section 2, the confidence in the prediction is one minus the second largest
randomness level detected by t. For non-binary problems, this confidence seems
too large—if all of the randomness levels were close in value to one another, the
confidence should presumably be close to 1 divided by the number of classes.
In Figure 6, perhaps relatedly, the three lines appear to have slightly larger
gradients than their confidence levels should permit.

At the end of Section 2, because their universal confidence predictor is not
computable, the authors set their goal to find computable approximations. In
this case, there are both frequentist ([54], Section 3.3) and algorithmic com-
plexity ([55], [52], Section 6.7.2, p. 275) Bayesian reasons for advocating Strict
MML (SMML) as a form of inference. SMML can be further approximated
([52], Chapters 4–5, etc., [55], Section 6.1.2).

The choice of (universal or non-universal) TM and of randomness test, t,
is still a Bayesian choice ([55], [52], Section 2.3) (even if not conventionally so
([52], Sections 2.3.11–2.3.13)), so in Section 4 when the authors find an improve-
ment over the ‘Bayes-optimal predictor’ and talk of a conformal predictor being
‘asymptotically as good as the Bayes-optimal’, this might be because their un-
derlying TM is more expressive than the original Bayesian prior and so has it
as a special case.

In Table 1 and Section 4, which (non-universal) test is being used?
I would welcome log-loss scores reported with the error counts of Figures 6

and 7.
MML has dealt with problems where the amount of data per continuous-

valued parameter is bounded above ([52], Section 6.9) and with ‘inverse learning’
problems where the best way to model the target attribute might be to model it
jointly or to model other attributes in terms of it ([13], [7], [8], [40], Section 5).

Vapnik ([42], Section 4.6) discusses using MDL (or MML) to model SVMs.
For a hybrid of both decision trees and SVMs using MML and allowing non-
binary classifications (without requiring ‘one-against-the-rest’ procedures), see
[40].

Inference and prediction are closely related ([55], Section 8), and we endorse
the TM approach to both problems. Today’s article has been a useful advance
in this direction.

Glenn Shafer

Royal Holloway, University of London, and Rutgers University

This article provides an excellent explanation of the fundamentals of confor-
mal prediction. I have already begun recommending it to those who want to
master the method without wading into the more comprehensive and intricate
exposition in [51].

Like all good ideas, conformal prediction has a complex ancestry. As Gam-
merman and Vovk explain, they invented the method as a result of their study
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of work by Chervonenkis, Vapnik, Kolmogorov, and Martin-Löf. But they sub-
sequently discovered related ideas in earlier work by mathematical statisticians.
As we explain on pp. 256–257 of [51], Sam Wilks, Abraham Wald, and John
Tukey developed non-parametric tolerance regions based on permutation argu-
ments in the 1940s, and Donald Fraser and J. H. B. Kemperman used the same
idea to construct prediction regions in the 1950s. From our viewpoint, Fraser
and Kemperman were doing conformal prediction in the special case where ys
are predicted without the use of xs. It is easy (once you see it) to extend the
method to the case where xs are used, and Kei Takeuchi has told us that he
explained this in the early 1970s, first in lectures at Stanford and then in a
book that appeared in Japanese in 1975 [38]. Takeuchi’s idea was not taken up
by others, however, and the rediscovery, thorough analysis, and extensions by
Gammerman and Vovk are remarkable achievements.

Because it brings together methods well known to mathematical statisticians
(permutation methods in non-parametrics) and a topic now central to machine
learning (statistical learning theory), the article prompts me to ask how these
two communities can be further unified. How can we make sure the next gener-
ation of mathematical statisticians and computer scientists will have full access
to each other’s experience and traditions?

Statistical learning theory is limited in one very important respect: it con-
siders only the case where examples are independent and identically distributed,
or at least exchangeable. The i.i.d. case has also been central to statistics ever
since Jacob Bernoulli proved the law of large numbers at the end of the 17th
century, but its inadequacy was always obvious. Leibniz made the point in his
letters to Bernoulli: the world is in constant flux; causes do not remain con-
stant, and so probabilities do not remain constant. Perhaps Leibniz’s point is
a counterexample to itself, for it is as topical in 2006 as it was in the 1690s.
In the most recent issue of Statistical Science, David Hand gives as one of his
reasons for scepticism about apparent progress in classifier technology the fact
that ‘in many, perhaps most, real classification problems the data points in the
design set are not, in fact, randomly drawn from the same distribution as the
data points to which the classifier will be applied’ [18].

It is revealing that Hand finds it necessary to say this three centuries after
Leibniz. We can cite methods that have been developed to deal with non-i.i.d.
data:

1. Starting at the end of the 18th century, probabilists used models in which
the ys are independent only given the xs. To get results, they then made
strong assumptions about the distribution of the ys. If we assume the
ys are Gaussian with constant variance and means linear in the xs, we
get the Gauss linear model, so called because Gauss used it to prove the
optimality of least squares [51].

2. Starting with Markov at the end of the 19th century, probabilists have
studied stochastic process models—probability models for successive ex-
amples that are not necessarily i.i.d.
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3. Statisticians often take differences between successive observations, per-
haps even higher-order differences, in attempt to get something that looks
i.i.d.

4. A major topic in machine learning, prediction with expert advice, avoids
making any probability assumptions at all. Instead, one specifies a class
of prediction procedures that one is competing with [6].

But we have stayed so true to Bernoulli in our overview of what statistics
is about that we seldom ask potential statisticians and data analysts to look
at a list like this. A general course in statistical inference usually still studies
the i.i.d. case, leaving each alternative to be taken up as something distinct,
often in some specialized discipline, such as psychometrics, econometrics, or
machine learning, whose special terminology makes its results inaccessible to
others. Except perhaps in a course in ‘consulting’, we seldom ponder or teach
how to compare and choose among the alternatives.

Reinforcing the centrality of the i.i.d. picture is the centrality of the Cartesian
product as the central structure for relational databases. Neither in statistics
nor in computer science have we built on Art Dempster’s now classic (but un-
fortunately not seminal) article on alternatives to the Cartesian product as a
data structure [12].

More than 15 years ago I urged that statistics departments embrace the
insights of specialized disciplines such as econometrics and machine learning in
order to regain the unifying educational role that they held in the mid-twentieth
century [34]. It is now clear that this will not happen. Statistics is genetically
imprinted with the Bernoulli code [5]. Perhaps the machine learning community,
which has had the imagination to break out of the probabilistic mode altogether
with its concept of prediction with expert advice, should pick up this leadership
mantle.

Drago Indjic

London Business School

Are there any results in applying confidence and credibility estimates to active
(statistical) experiment design?

Glenn Hawe

Vector Fields Ltd., Oxford

School of Electronics and Computer Science, Southampton

In cost-effective optimization, ‘surrogate modelling’ is the estimation of objec-
tive function values for unevaluated design vectors, based on a set of design
vectors which have their objective function values known. In this sense, surro-
gate modelling is to an optimization researcher, what machine learning is to a
computer scientist.
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Surrogate model-assisted optimization algorithms may be divided into two
main categories [19]: two-stage and one-stage varieties. Two-stage algorithms
involve fitting a surface to the observed examples, and then selecting the next
design vector (object, in machine-learning terminology) to evaluate, based on
this prediction (the idea in optimization being to evaluate the design vector
(object) with the lowest valued objective function value (label)). Usually it is
just the object with the lowest valued label which is evaluated, but sometimes
uncertainty considerations are taken into account too, e.g., [20].

One-stage algorithms differ significantly—they make a hypothesis about the
position of the global minimum, both its position in design variable space (its
object value), and its objective function value (its label—hypothesized to be
lower than the current minimum label), and then calculate the credibility of the
surface which passes through the hypothesized point and the observed points.
The credibility of the surface is related to its ‘bumpiness’, with bumpier surfaces
being deemed less credible. The design vector which is evaluated next is the one
which has the most credible surface passing through it (i.e., the object which
has its label observed next is the object which has the most credible surface
passing through it, having hypothesized its label to be lower than the lowest
valued label observed so far).

So, it appears that, in machine-learning terminology, ‘inductive inference’
is completely analogous to ‘two-stage algorithms’ and ‘transductive inference’
is completely analogous to ‘one-stage algorithms’. The interesting thing for
optimization is that there has only been one one-stage algorithm proposed so
far in the literature: an algorithm known as rbfsolve [17], which uses radial
basis functions to interpolate the points, and is one of the best performing
(single-objective) optimization algorithms around. It would appear that the
work done by Gammerman and Vovk allows the one-stage technique of selecting
points to evaluate to be applied to a wider range of surrogate models (and in
particular, support vector machines), as it proposes a quantitative measure of
the reliability of a hypothesized prediction. I suspect that a greater range of
one-stage optimization algorithm will appear as a result of this work, and in the
light of the results of [17], that they will perform extremely well.

Vladimir Vapnik

AT&T Bell Laboratories, Holmdel, NJ

Computer Learning Research Centre,
Royal Holloway, University of London

Vladimir.Vapnik@rhul.ac.uk

I would like to congratulate the authors with their interesting article and stim-
ulating research that opens several new directions in predictive learning. The
authors present a new methodology of hedging predictions, and have removed
some of the ad hoc procedures that are often used in calculating the bounds
and confidence of prediction. In fact they introduced a new paradigm in pat-
tern recognition research based on the Kolmogorov concept of randomness and
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therefore have opened a way for many new methods and algorithms in classi-
fication and regression estimation. This new methodology makes reliable pre-
dictions and it is impressive to see its comparison with the Bayesian approach,
where the conformal predictors give correct results while Bayesian predictions
are wrong. The article is interesting also since it allows us to see how the confor-
mal predictors have been applied to several real-world examples. The results can
also be applied to the vast majority of well-known machine-learning algorithms
and demonstrate the importance of the transductive mode of inference.

In the late 1960s, in order to overcome the curse of dimensionality for pat-
tern recognition problems, Alexey Chervonenkis and I introduced a different
approach (the VC theory) called Predictive Statistics. The VC theory for
constructing predictive models was a continuation of the Glivenko–Cantelli–
Kolmogorov line of analysis of induction. At the heart of this theory are new
concepts that define the capacity of the set of functions (characterization of the
diversity of the set of functions defined by a given number of points): the VC
entropy of the set of functions, the Growth function, and the VC dimension.

Until now, the traditional method of inference was the inductive-deductive
method, where using available information one defines a general rule first, and
then using this rule deduces the answer one needs. That is, first one goes from
particular to general and then from general to particular. In the transductive
mode one provides direct inference from particular to particular, avoiding the
ill-posed part of the inference problem (inference from particular to general).
The goal of transductive inference is to estimate the values of an unknown
predictive function at a given point of interest (but not in the whole domain
of its definition). By solving less demanding problems, one can achieve more
accurate solutions. A general theory of transduction was developed where it was
shown that the bounds of generalization for transductive inference are better
than the corresponding bounds for inductive inference.

Transductive inference, in many respects, contradicts the main stream of the
classical philosophy of science. The problem of the discovery of the general laws
of nature was considered in the philosophy of science to be the only scientific
problem of inference because the discovered laws allow for objective verification.
In transductive inference, objective verification is not straightforward. It would
be interesting to know the authors’ point of view on this subject.

Harris Papadopoulos

Frederick Institute of Technology, Nicosia, Cyprus

harrispa@cytanet.com.cy

I would like to congratulate the authors on this clearly written and detailed
article. This article presents an excellent new technique for complementing the
predictions produced by machine-learning algorithms with measures of confi-
dence which are provably valid under the general i.i.d. assumption. One can
easily appreciate the desirability of such measures in many real-world applica-
tions, as they can be used to determine the way in which each prediction should
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be treated. For instance, a filtering mechanism can be employed so that only
predictions that satisfy a certain level of confidence will be taken into account,
while the rest can be discarded or passed on to a human for judgment.

The most appealing feature of conformal prediction is that it can be applied
to virtually any machine-learning method designed to work under the i.i.d. as-
sumption without the need of any modification in order to achieve validity of the
resulting confidence measures. Experimental results on a variety of conformal
predictors (based on many different algorithms mentioned in the article) have
shown that conformal predictors give high-quality confidence measures that are
useful in practice, while their accuracy is, in almost all cases, exactly the same
as that of their underlying algorithm. Consequently, conformal prediction does
not have any undesirable effect on the accuracy of its base method, while it adds
valuable information to its predictions.

The only drawback one can say that conformal predictors have, is their
relative computational inefficiency, as they perform a much larger amount of
computations than their underlying algorithms. Because of this, inductive con-
formal prediction (ICP), described in Section 8 of this article, was suggested
in [30] for regression and in [31] for pattern recognition. We have successfully
applied ICP to four widely used machine-learning techniques, namely ridge re-
gression (described in [30]), nearest neighbours regression, nearest neighbours
for pattern recognition (described in [30]) and neural networks for pattern recog-
nition. The results obtained by applying these methods to benchmark data sets
were almost as good as those produced by CPs. Undoubtedly ICPs suffer a
small loss both in terms of accuracy and in terms of quality of their confidence
measures; however, this loss is very small and tends to become even smaller as
we go to larger data sets. In fact, for very large sets, such as the NIST and
Shuttle data sets, this loss does not exist at all.

Furthermore, in the case of regression we have shown that by including
additional information, than just the error of our prediction rule

αi := |yi − ŷi| (15)

for each example i, in our nonconformity measure we can make it more precise.
In [30] (for ridge regression), we have defined the nonconformity measure

αi :=
∣∣∣∣
yi − ŷi

σi

∣∣∣∣ , (16)

where σi is an estimate of the accuracy of the decision rule f on xi. More
specifically, we take σi := eµi , where µi is the RR prediction of the value
ln (|yi − f(xi)|) for the example xi. The effect of using this nonconformity
measure is that the prediction regions produced by ICP are smaller for points
where the RR prediction is good and larger for points where it is bad.
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Alan Hutchinson

Department of Computer Science, King’s College London

The article by Gammerman and Vovk, presented to the BCS on Monday 12th
June, is both novel and valuable. It outlines an approach for estimating the
reliability of predictions made by machine-learning algorithms. Here are three
short notes on it.

1: Intuitive interpretation The approach to learning via computability
might be thought of as an attempt to discover a computable probability dis-
tribution P which seems to fit the training set well. (Professor Vovk points
out that it isn’t. It is designed to find the predictions which such a P might
allow one to make, but it does so by means of a ‘randomness test’ t rather than
directly through any P .)

Randomness seems to be a very strange approach. In machine learning, a
seemingly random training set is the worst possible starting point. Learning is
only practical if there is some non-randomness in the training set.

The answer to this quandary is that the training set should indeed have some
non-random aspect, as viewed from the perspective of anyone living in ordinary
space with its usual Euclidean metric and measure. The distribution P which
might be learned is one according to which the training set is random. The
more nearly the training data appear to be random according to P , the better
P fits them. For instance, if the training set is a constant sequence (z, z, . . . , z)
then the probability distribution which one might try to learn from it is the
Dirac measure δz.

2: What is ‘randomness’? The method depends on a function t : Z∗ →
[0, 1] which is called a randomness test. The first condition on t is that

∀ε < 1 ∀n ∀P : Pn ({s ∈ Zn : t(s) ≤ ε}) ≤ ε.

Here, P ranges over all (computable) probability distributions on Z. When P
is the Dirac δ measure at z, this implies that

t(z, z, . . . , z) = 1 for any z ∈ Z.

My first reaction was that any such sequence (z, z, . . . , z) appears to be as
non-random as any training set could be, and perhaps t should be called a
non-randomness test. However, this is not the right interpretation.

The point is, the condition on t is independent of any particular choice of
P . According to such a test t, a sequence s should be random if there is any
probability distribution P on Z under which s appears to be random. In this
case, the constant sequence (z, z, . . . , z) really is random under the distribution
δz.

There are genuinely non-random sequences. Vovk gave the example
‘101010 . . . 10’.
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3: Future research After the lecture by Gammerman and Vovk, I wondered
if there may be learning situations in which there is a computable universal ran-
domness test. In general, there are always universal randomness tests, and they
are all not very different from each other, but all are only upper semicomputable.
The class of machine-learning tasks with computable universal randomness tests
may be interesting, unless it is empty.

Professor Vovk, who knows much more about it than me, says that any such
machine-learning task must be exceedingly simple.

The subject can be developed in other directions, e.g., as by Peter Gács [14]
and Vladimir Vovk [49].

B Rejoinder

We are very grateful to all discussants for their interest in our article and their
comments. We will organize our response by major topics raised by them.

Efficiency of conformal predictors

As we say in the article, the two most important properties expected from
confidence predictors are validity (they must tell the truth) and efficiency (the
truth must be as informative as possible). Conformal predictors are automati-
cally valid, so there is little to discuss here, but so far achieving efficiency has
been an art, to a large degree, and Alexey Chervonenkis, Phil Long, and Sally
McClean comment on this aspect of conformal prediction.

Indeed, as Prof. Chervonenkis notices, the article does not contain any the-
oretical results about efficiency. Such a result appears as Theorem 3.1 in our
book [51]. We use a nonconformity measure based on the nearest neighbours
procedure to obtain a conformal predictor whose efficiency asymptotically ap-
proaches that of the Bayes-optimal confidence predictor. (Remember that the
Bayes-optimal confidence predictor is optimized under the true probability dis-
tribution, which is unknown to Predictor.) This result only applies to the case
of classification, and it is asymptotic. Nevertheless, it is our only step towards
a ‘more principled way of designing good measures of strangeness’, as Prof. Mc-
Clean puts it. Her question suggests the desirability of such more principled
ways; we agree and would very much welcome further results in this direction.

An important aspect of efficiency is conditionality, discussed at length in
[51] (see, e.g., p. 11). It would be ideal if we were able to learn the conditional
probability distribution for the next label. Unfortunately, this is impossible
under the unconstrained assumption of randomness, even in the case of binary
classification ([51], Chapter 5). The definition of validity is given in terms of
unconditional probability, and this appears unavoidable.

However, Prof. Chervonenkis’s worry that for some objects the prediction
interval might be too wide and for other too narrow has been addressed in [51]. If
our objects are of several different types, the version of conformal predictors that
we call ‘attribute-conditional Mondrian conformal predictors’ in [51] (Section
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4.5) will make sure that we have separate validity for each type of objects. For
example, in medical applications with patients as objects, we can always ensure
separate validity for men and women.

Computational efficiency

We are concerned with two notions of efficiency in our article: efficiency in the
sense of producing accurate predictions and computational efficiency (the latter
being opposite to ‘computational complexity’, the term used by Prof. McClean).
There is some scope for confusion, but the presence or absence of the adjective
‘computational’ always signals the intended meaning.

Harris Papadopoulos complements our brief description of inductive confor-
mal predictors with an interesting discussion of experimental results. It was
an unexpected and pleasing finding that the computationally efficient inductive
conformal predictors do not suffer accuracy loss for even moderately large data
sets. His two nonconformity measures for ridge regression, (15) and (16), illus-
trate the general fact that different nonconformity measures can involve different
degrees of tuning to the data. Another finding of [30] and [31] was that more
tuning (as in Equation (16), as compared to (15)) does not necessarily mean
better accuracy: it can lead to overfitting when the available data are scarce.

Interpretation and packaging

The question of interpretation of p-values is a difficult one. In general, p-values
are the values taken by a randomness test (they were also called ‘the randomness
level detected by a randomness test’ in Section 2). They are not probabilities
and we believe should not be criticized for not being probabilities; they satisfy
condition (3) and this makes them valuable tools of prediction. They allow us
to make probabilistic statements (such as ‘at confidence level 1 − ε, smoothed
conformal predictors used in the on-line mode make mistakes with probability
ε, independently for different examples’).

Many of David Dowe’s criticisms just remind us that a p-value, as well as
a confidence, in our sense, is not a probability. He says that ‘for non-binary
problems, this confidence seems too large’, with an argument endowing p-values
with a property of probabilities (they are assumed to add to one). The fact that
the three lines in Figure 6 have slightly larger gradients than the corresponding
significance levels is accidental and not statistically significant. After all, we
have a theorem (Theorem 1 on p. 17) that guarantees validity; the deviations
are well within the double standard deviation of the number of errors. (To
facilitate the comparison, the actual numbers of errors at the confidence levels
80%, 95% and 99% are 1873, 470 and 107, respectively; the expected numbers
of errors are 1859.6, 464.9 and 92.98, respectively; the standard deviations are
38.57, 21.02 and 9.59, respectively. In this experiment the MATLAB generator
of pseudo-random numbers was initialized to 0.) We could not report the log-
loss scores for Figures 6 and 7 because the methods described in our article do
not produce probability forecasts.
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The problem of valid and efficient probabilistic prediction is considered in
our book ([51], Chapters 6 and 9). We show that the ‘Venn predictors’ that
we construct are automatically valid, but the notion of validity for probabilistic
predictors is much subtler than that for confidence predictors in the practically
interesting case of finite data sequences. (In the idealized case of infinite data
sequences the asymptotic notion of validity is quite simple, and asymptotically
valid probabilistic predictors are known as well-calibrated predictors.) Unfor-
tunately, it was impossible to include this material in our talk and article.

To finish our reply to Dr Dowe’s contribution, the randomness test used in
Table 1 is given by formula (5) with the αi computed using the support vector
method with the polynomial kernel of degree 5 (as we say in the text); in Section
4 the randomness test is the one implemented by the ridge regression confidence
machine (as we say both in the text and in the figure captions).

As Xiaohui Liu points out, a key issue for hedged prediction is how to assist
users with the interpretation and utilization of our measures of confidence. The
full information about the uncertainty in the value of the label to be observed,
as given by a conformal predictor, is provided by the full set of p-values pY ,
Y ∈ Y. Even in the case of classification, this set has to be somehow summarized
when the set Y of potential labels is large. Our preferred way of summarizing
the set {pY : Y ∈ Y} is to report two numbers: the confidence (defined by
(8) or, equivalently, as one minus the second largest p-value) and credibility
(9) (equivalently, the largest p-value). Prof. Chervonenkis suggests replacing
confidence with the difference between the largest and second largest p-values. In
combination with credibility this carries the same information as our suggestion.
The pair (confidence, credibility) still appears to us simpler and more intuitive,
but we believe that this is a matter of taste.

What is randomness?

To motivate the definition of conformal predictors we start the article from the
notion of randomness. Alan Hutchinson’s comments give us an opportunity to
discuss further terminological and philosophical issues surrounding this notion.

The word ‘random’ is loaded with a plethora of different meanings. Several
years ago we even tried to avoid it altogether in our lectures and articles, using
‘typical’ instead. But the noun ‘typicalness’ was so awkward and both ‘ran-
dom’ and ‘randomness’ so well established that we reverted to the old usage.
Kolmogorov, who started the modern stage of the theory of randomness, was
only interested in randomness with respect to the uniform distribution on a
finite set, and in this case the word ‘random’ (as well as its Russian counter-
part ‘sluqa�ny�’) matches the common usage perfectly. Later on his followers
started generalizing Kolmogorov’s concept to arbitrary probability measures and
statistical models; although the mismatch between the technical and ordinary
senses of the word ‘random’ became apparent, the term was not changed.

We think that Part 1 of Mr Hutchinson’s contribution is very well illustrated
by Dr Long’s aphoristic statement that ‘in many applications, one expects ran-
domness between examples and structure within them’. A ‘seemingly random
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training set’ is a bad starting point if there is too much randomness within
examples, but randomness between examples helps: it enables us to make prov-
ably valid stochastic statements about the future. Another point we would like
to emphasize is that we do not have to learn the true probability distribution
P to make good predictions (as repeatedly pointed out by Vladimir Vapnik
in [42] and [43]); in fact, conformal predictors, despite producing reasonable
predictions, do not provide us with any information about P .

As Mr Hutchinson says, our initial reaction to his idea of a computable
universal randomness test was that such a test is unlikely to exist except in very
simple and uninteresting cases. This impression was based on our experience so
far (for a given computable test it is usually easy to find another computable
test that is much more powerful on some data). However, our experience only
covers a small part of machine learning, and it is by no means our intention to
discourage research in this direction.

Philosophy

Prof. Vapnik asks our opinion about philosophical aspects of transductive in-
ference. To a large degree, we are his pupils on this subject (the reader can
consult his books [42, 43] and the afterword to the second English edition of his
classic [41]). It appears that the role of transduction is constantly increasing.
The muddle-headed transduction, to borrow David Bell’s delightful metaphor,
is obviously the right way of reasoning in the complex social world surrounding
us. But even in physics, the traditional abode of the most general and precise
rules (physical theories), pure induction encounters serious difficulties: we have
two very general sets of rules, quantum mechanics and general relativity, but
they contradict each other. Induction appears to be becoming subordinate to
transduction; for example, as in this article, induction might make transduction
more computationally efficient.

At this point it is useful to remind the reader that this article always makes
the assumption of randomness. The general ideas such as induction and trans-
duction become incomparably more manageable. This is a very simple-minded
world: the usual philosophical picture of constant creation of and struggle be-
tween scientific theories (e.g., [22], [32]) becomes irrelevant. But we have to
start somewhere.

As Prof. Bell can see, despite our interest in transduction, our article is still
very much simple-minded. In its current embryonic state all rigorous machine
learning has to be such, and it is likely to stay this way for some time. The only
thing we can hope to do now is to nick a few interesting topics here and there
from more muddle-headed areas such as experimental AI or philosophy, and try
to prove something about them.

Predecessors of conformal prediction

This topic was raised by Glenn Shafer. Of course, the vast majority of our
comments are not new to him, and they are mostly addressed to people who

39



are not experts in this field. Indeed, our work is closely connected to that of
Kei Takeuchi and his predecessors mentioned by Prof. Shafer: Sam Wilks, who
introduced in 1941 the notion of tolerance regions, Abraham Wald, who in 1943
extended Wilks’s idea to the multidimensional case, and John Tukey, Donald
Fraser, John Kemperman (and many other researchers), who in the 1940s and
1950s contributed to generalizing Wald’s idea.

From the very beginning of the theory there were two versions of tolerance
regions, which we might call inductive (involving two parameters, denoted ε and
δ in our article) and transductive (involving only one parameter). We will be
discussing only the latter version.

Let ε > 0. A function Sε mapping each training set to a subset of the
example space Z is called a conservative ε-tolerance predictor if the probability
of the event

zl+1 ∈ Sε(z1, . . . , zl)

is at least 1 − ε (for all sizes l and for independent and identically distributed
examples z1, . . . , zl+1). In practice one usually considers systems of conservative
ε-tolerance predictors Sε, ε ∈ (0, 1), which are nested: Sε1 ⊆ Sε2 when ε1 ≥ ε2.
For brevity, we will refer to such systems of conservative ε-tolerance predictors
as tolerance predictors.

The parallel between tolerance predictors and valid confidence predictors
is obvious. For example, given a tolerance predictor S we can define a valid
confidence predictor Γ by the formula

Γε (x1, y1, . . . , xl, yl, xl+1) := {Y ∈ Y : (xl+1, Y ) ∈ Sε (x1, y1, . . . , xl, yl)} .

So what do the conformal predictors contribute to the theory of tolerance re-
gions?

The most important contribution of conformal prediction is perhaps the gen-
eral definition of nonconformity measures. In our book ([51], p. 257) we describe
a version of an important procedure due to Tukey for computing nonconformity
scores (using our terminology). However, it appears to us that Tukey’s proce-
dure (and its predecessors due to Wilks, Wald, and several other researchers)
can be used efficiently only in the case of traditional low-dimensional statistical
data sets, and to process data sets that are common in machine learning one
needs the general definition, as given in this article. An important advance to-
wards the general definition of nonconformity measures was made by Takeuchi
in the recently found manuscript [39], a hand-out for his lecture at Stanford
University in 1979. According to the information we have been able to gather
after Prof. Shafer’s talk at the discussion of our article, the chronology of events
seems to be slightly different from his description. The Stanford lectures (or lec-
ture) happened in the late rather than early 1970s (namely, in July 1979), after
the publication of [38] in 1975. To our knowledge, Takeuchi’s idea of nonconfor-
mity measures for multi-dimensional tolerance regions has never been published,
even in Japanese. We are lucky to have the three-page handwritten manuscript
[39]. Takeuchi’s definition of nonconformity is rather narrow (based on param-
eter estimation), and he does not state it formally; he gives only one example
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of its use in a multi-dimensional situation. However, there is little doubt that
if Takeuchi had continued work in this direction, he would have arrived at the
general definition.

For a much fuller historical account, including our predecessors in machine
learning (but not including [39], which was found only in July 2006), see [51],
especially Section 10.2.

Applications in medicine and biology

Zhiyuan Luo and Tony Bellotti describe in detail the use of conformal predictors
in medical applications; we have little to add to their very clear description.
Medicine appears to be an especially suitable field for this technique. Consider,
for example, the problem of automated screening for a serious disease. We would
like to declare a person clean of the disease only if we are confident that he or she
really is; if we are not, the test results should be passed on to a human doctor.
The guaranteed validity of automated screening systems based on conformal
prediction is obviously of great value; even if such a system is badly designed,
this will be reflected in its efficiency (extra work for human doctors), but the
patients can be assured that validity will never suffer. This guarantee depends,
of course, on the assumption of randomness being satisfied, but in this particular
application it appears reasonable.

In biological applications, the most natural use of conformal prediction is
to filter out, e.g., uninteresting genes. Prof. Liu discusses the difficult problem
of setting thresholds for deciding when a gene should be passed on to a biolo-
gist for a further analysis. There might not be universally applicable principles
for making such decisions. The whole process of analysis might involve sev-
eral iterations, with the thresholds lowered or raised depending on the results
obtained.

Assumptions

Prof. Shafer eloquently points out the narrowness of the assumption of ran-
domness (called the i.i.d. assumption by several discussants). We agree that it
is rather narrow (and one of us has been concerned since the late 1980s with
prediction free of any stochastic assumptions: see, e.g., [46], [47]), but we will
start from its defence.

The assumption of randomness is non-parametric. No assumptions what-
soever are made about the probability distribution generating each example.
In many situations this assumption is close to being satisfied; think, e.g., of a
sequence of zip codes passing through a given post office (over a period of time
that is not too long). It is an interesting and widely applicable assumption.

Besides, it is clear that some stochastic assumption is needed in order to
obtain valid stochastic measures of confidence. Taking into account the strength
of guarantees that can be derived, we find the assumption surprisingly weak.
In Chapter 8 of [51] we further generalize the method of conformal prediction
to cover a wide range of ‘on-line compression models’, and in Section 8.6 we
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derive conformal predictors for the Markov model (cf. numbers 2 and 3 on Prof.
Shafer’s list).

It can be counted as a disadvantage of conformal prediction that it depends
heavily on the assumption of randomness. Our discussion will be general, but we
will couch it, for concreteness, in terms of support vector machines. The support
vector method can also be said to depend on the assumption of randomness:
the theorems about support vector machines obtained in [42]–[43] always make
this assumption. What is important in typical applications, however, is not the
theorems but the predictions themselves, which are more precise for support
vector machines than for many other methods. Support vector machines can
always be applied and the results will be useful unless the assumption is violated
dramatically. Of course, conformal predictors can also be always applied, but
the measures of confidence are an integral part of their predictions, and the
validity of these measures is much more sensitive to violations of the assumption
of randomness (or assumptions expressed by other on-line compression models).

Drago Indjic raises the question of applying confidence and credibility to
active experimental design. In the limited framework of this article, the objects
xi, being components of the i.i.d. examples, are themselves i.i.d. Active exper-
imentation destroys this property. If this article’s approach were followed, one
would need relatively long sequences of i.i.d. examples between active interven-
tions, and this appears wasteful. Combining active experimental design with
confidence and credibility without waste would require developing a suitable
on-line compression model, perhaps a version of the Gauss linear model ([51],
Section 8.5).

The topic of experimental design is continued by Glenn Hawe. The analogy
between two-stage/one-stage varieties of cost-effective optimization and induc-
tion/transduction is striking, but implementing his idea will again require a
different on-line compression model. The assumption of randomness, so central
in our article, is quite different from the assumption of ‘low bumpiness’. Find-
ing a suitable on-line compression model might not be easy, but it is definitely
worth pursuing.

Dr Long’s idea of using conformal prediction in reinforcement learning also
requires another on-line compression model. A good deal of further work is still
needed.

This brings us back to the limitations of the assumption of randomness. It
makes many applications (such as active experimental design and reinforcement
learning) problematic. The assumption can be weakened or modified (see [51]
for numerous examples), but it is always good to have at our disposal meth-
ods of prediction that do not depend on any stochastic assumptions. As Prof.
Shafer says, such probability-free methods are being actively explored in pre-
diction with expert advice (also known as ‘universal prediction of individual se-
quences’ and ‘competitive on-line prediction’), with some recent breakthroughs.
In many applications (such as typical medical applications) the assumption of
randomness is convincing and the measures of confidence provided by confor-
mal predictors are really needed. In other areas, particularly those in which
no human intervention is envisaged, conformal prediction is less useful, and if,

42



additionally, the assumption of randomness is violated, the case for prediction
with expert advice becomes very strong.

Acknowledgements

We are grateful to Akimichi Takemura for sharing [39] with us.

References

[1] Peter Auer. Using confidence bounds for exploitation-exploration trade-
offs. Journal of Machine Learning Research, 3:397–422, 2002.

[2] John S. Bell. Speakable and Unspeakable in Quantum Mechanics. Cam-
bridge University Press, Cambridge, 1987. See p. 27.

[3] Tony Bellotti, Zhiyuan Luo, Alexander Gammerman, Frederick W. van
Delft, and Vaskar Saha. Qualified predictions for microarray and pro-
teomics pattern diagnostics with confidence machines. International Jour-
nal of Neural Systems, 15:247–258, 2005.

[4] Ulisses M. Braga-Neto and Edward R. Dougherty. Is cross-validation valid
for small-sample microarray classification? Bioinformatics, 20:374–380,
2004.

[5] Bernard Bru. The Bernoulli code. Electronic Journal for History
of Probability and Statistics, 2(1), June 2006. Available on-line at
http://www.jehps.net.

[6] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games.
Cambridge University Press, Cambridge, England, 2006.

[7] Joshua W. Comley and David L. Dowe. General Bayesian networks and
asymmetric languages. In Proceedings of the Hawaii International Confer-
ence on Statistics and Related Fields, June 2003.

[8] Joshua W. Comley and David L. Dowe. Minimum message length and
generalized Bayesian nets with asymmetric languages. In Peter Grünwald,
Mark A. Pitt, and In Jae Myung, editors, Advances in Minimum Descrip-
tion Length: Theory and Applications, pages 265–294. MIT Press, 2005.

[9] David R. Cox and David V. Hinkley. Theoretical Statistics. Chapman and
Hall, London, 1974.

[10] A. Philip Dawid. Probability forecasting. In Samuel Kotz, Norman L. John-
son, and Campbell B. Read, editors, Encyclopedia of Statistical Sciences,
volume 7, pages 210–218. Wiley, New York, 1986.

[11] A. Philip Dawid. Discussion of the papers by Rissanen and by Wallace and
Dowe. Computer Journal, 42(4):323–326, 2000.

43



[12] Arthur P. Dempster. An overview of multivariate data analysis. Journal
of Multivariate Analysis, 1:316–346, 1971.

[13] David L. Dowe and Chris S. Wallace. Kolmogorov complexity, minimum
message length and inverse learning. In Proceedings of the Fourteenth Aus-
tralian Statistical Conference, page 144, 1998.
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