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Abstract

We point out that the traditional notion of test statistic is too narrow, even
for the purpose of conformal prediction. The most natural generalization of
the traditional notion happens to be too wide. We propose another natural
generalization which is arguably the widest reasonable generalization. The study
is restricted to simple statistical hypotheses.

A version of this paper (which is updated less often) is published as an arXiv
technical report: https://arxiv.org/abs/1702.02590. The conference ver-
sion is published in the Proceedings of COPA 2019 (Proceedings of Machine
Learning Research 105:89–104).
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. . . the enormous usefulness of mathematics in the
natural sciences is something bordering on the
mysterious. . .

Eugene P. Wigner, 1960

. . . statistics is a branch of applied mathematics, like
symbolic logic or hydrodynamics. Examination of
foundations is desirable, but it must be remembered
that undue emphasis on niceties is a disease to which
persons with mathematical training are specially prone.

George A. Barnard, 1947

1 Introduction

The traditional definition of the p-value associated with a given test statistic f
and outcome x is

f̂(x) = P[f ≤ f(x)] (1)

where [f ≤ f(x)] = {y : f(y) ≤ f(x)}. The standard textbook convention is

that the test statistic f takes values in the real line. But the definition of f̂
requires only that the codomain of f be an ordered measurable space and that
the initial segments (−∞, f(x)] be measurable. Should we generalize the notion
of test statistics? Would any linearly ordered measurable space work as the
codomain of a test statistic f provided that the initial segments (−∞, f(x)] are
measurable?

Our answer to the first question is “yes”. Generalized test statistics have
been, albeit implicitly, used in conformal prediction and applied statistics. For
example, to incorporate the notion of randomized p-values into definition (1),
one needs generalized test statistics with codomains that are richer than the
real line, as we discuss later in this article (Section 5). Our analysis turns up
a more radical generalization, which is more natural and arguably the widest
generalization that makes sense.

The answer to the second question is an emphatic “no”. There exist a
probability space (Ω,Σ,P) and a statistic f with values in a linearly ordered

set with measurable initial segments such that every f̂(x) = 0. Intuitively, this
makes no sense: we are entitled to reject the null hypothesis whatever happens.
Formally, this contradicts the standard property

P[f̂ ≤ ε] ≤ ε for every nonnegative ε < 1 (2)

of the validity of p-values.

Example 1.1. The sample space Ω is the collection (known to set theorists as
ω1) of countable (that is finite or infinite countable) ordinals. In set theory, every
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ordinal is the set of smaller ordinals: 0 is the empty set, 1 = {0}, 2 = {0, 1},
3 = {0, 1, 2}, the first infinite ordinal ω0 is the set {0, 1, . . . } of natural numbers,
ω0+1 = ω0∪{ω0}, ω0+2 = ω0∪{ω0, ω0+1}, . . . , ω0+ω0 = ω0∪{ω0+n : n ∈ ω0},
and so on. The first uncountable ordinal ω1 is the set of countable ordinals.

The σ-algebra Σ consists of all countable subsets of Ω and their complements,
and

P(X) =

{
0 if X is countable,

1 if Ω−X is countable.

Finally the statistic f is the identity function: f(x) = x. The order on the
codomain is natural:

x < y ⇐⇒ x ∈ y,

so that
0 < 1 < · · · < ω0 < ω0 + 1 < · · · < ω0 + ω0 < · · · .

For every countable ordinal x, the initial segment [0, x] is countable. Accordingly

f̂(x) = P[f ≤ f(x)] = P[0, x] = 0. /

As we already mentioned, a modest but useful generalization of the tra-
ditional p-value is already used in conformal prediction and applied statistics
(Section 5). We analyze what can go wrong with generalized test statistics and
arrive (in Subsection 2.3) at a generalization that is arguably the right one. And
we argue that generalized test statistics should be used more widely and not
necessarily in combination with randomization.

2 Test statistics

2.1 Nominal test statistics

Definition 2.1. Let T be a probability space (Ω,Σ,P) and R any ordered
measurable space with all initial segments (−∞, r] measurable. Any measurable
function f : Ω→ R is a nominal test statistic for T .

Notation T alludes to “probability trial”. An ordered measurable space is a
measurable space endowed with a linear order; in this article, “ordered” always
means “linearly ordered”.

The notion of nominal test statistic is auxiliary. As Example 1.1 shows, a
nominal test statistic may be unreasonable.

To comply with the traditional definition of p-values, Equation (1) above,
we restrict attention to ordered measurable spaces where every initial segment
of the form (−∞, r] is measurable. Note that if Σ1,Σ2 are σ-algebras on any set
R and Σ1 ⊆ Σ2 then every R-valued function that is measurable with respect to
Σ2 is measurable with respect to Σ1. In other words, the smaller the σ-algebra,
the greater the collection of measurable functions. This motivates the following
definition.
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Definition 2.2. The p-minimal σ-algebra on an ordered set R is the least
σ-algebra on R that contains every initial segment of the form (−∞, r].

If R is an ordered measurable space whose σ-algebra is p-minimal then the
measurability requirement for R-valued nominal test statistics simplifies to this:
Every set [f ≤ r] is measurable.

Definition 2.3. Let f be a nominal test statistic for a probability trial (Ω,Σ,P)
with codomain R. The nominal test statistic f induces the probability measure
Pf (S) = P(f−1(S)) on the measurable subsets of R.

2.2 Traditional and nearly traditional test statistics

Definition 2.4. A nominal test statistic is a traditional test statistic if its
codomain is the real line R with the Borel σ-algebra.

The real line is of course the set of real numbers with the standard order. Its
Borel σ-algebra coincides with its p-minimal σ-algebra. In the applications of
conformal prediction and statistics, mostly traditional test statistics are used.

We introduce a slight generalization of traditional test statistics that may
be convenient. (That is not the radical generalization mentioned in the Intro-
duction.) To this end, we recall a few definitions and facts.

Every ordered set (of size at least 1) is equipped with its order topology.
The segments (x, y), (−∞, x), (y,∞), and (−∞,∞) form a base of the order
topology. In this paper, the order topology is the default topology on ordered
sets.

A topology is second-countable if it has a countable base of open sets. A
jump in an ordered set (R,≤) is a pair (x, y) of points of (R,≤) such that x < y
and there is no z ∈ R with x < z < y. A mapping f whose domain and
codomain are both ordered sets is order-preserving (or an embedding) if x < y
implies f(x) < f(y) for all x and y in its domain. The following proposition is
proved in, e.g., [5, Theorem II and Lemma 3] and (in a somewhat less explicit
form) in [4, Theorem 24 in Section VIII.11].

Proposition 2.5. A linear order can be embedded into the real line R if and
only if its order topology is second countable. The order topology of a linear
order is second countable if and only if the topology is separable and the order
has at most countably many jumps.

Notice that any embedding of a linear order with second-countable topology
into the real line will be measurable: the pre-image of an initial interval (−∞, r]
of the real line can be represented as a countable union of initial intervals of this
form and is, therefore, measurable. Now we are ready to introduce the slight
generalization of traditional test statistics.

Definition 2.6. A nearly traditional test statistic is a nominal test statistic
whose codomain is second-countable.
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Remark 2.7 (codomains vs ranges). Consider a nominal test statistic f with
a codomain R, and let R′ be a nonempty subset of R endowed with the order
inherited from R. If R′ includes the range of f , we may view f as a nominal test
statistic with codomain R′. In particular, we may always view f as a nominal
test statistic whose codomain coincides with its range. This is especially relevant
in contexts where the range inherits the assumed properties of the codomain,
which is the case in most of our definitions and statements. (Definition 2.4 is
a major exception. As far as Definition 2.9 is concerned, the property “long”
may not be inherited but the more relevant property “short” is inherited.)

Traditionalists may argue that the generalization to the nearly traditional
test statistics is vacuous, and in a sense it is. By Proposition 2.5, any nearly
traditional test statistic can be composed with an order embedding to obtain a
traditional test statistic. This implies that any nearly traditional test statistic
f can be replaced by a traditional test statistic f ′; f and f ′ will be equivalent
in the sense of inducing the same order on Ω: f(x) ≤ f(y) if and only if
f ′(x) ≤ f ′(y). However, as the following schematic example shows, the nearly
traditional test statistic f may be more convenient to work with. This example
is inspired by the literature on randomized p-values (but it does not presuppose
the knowledge of randomized p-values, which will be introduced in Section 5).

Example 2.8. Let f be a traditional test statistic on a discrete measurable
space (Ω,Σ) with Ω countable (in which case randomizing p-values becomes
particularly useful). Let R be the range of f and equip R with its natural
order and the p-minimal (i.e., discrete in this case) σ-algebra. Set Ω′ to the
real segment [0, 1] and Σ′ to the p-minimal (i.e., Borel) σ-algebra on [0, 1]. (In
the context of randomized p-values, Ω′ is interpreted as the range of random
numbers generated by a random number generator.) Order R × [0, 1] lexico-
graphically, so that

(p, r) ≤ (q, s) ⇐⇒ p < q or (p = q and r ≤ s).

It is easy to check that the lexicographic order is second-countable (this uses the
countability of R) and that the function F (p, r) = (f(p), r) is a nearly traditional
test statistic on the product measurable space (Ω×Ω′,Σ⊗Σ′). While F is rather
natural, an equivalent traditional test statistic may be rather involved; think,
e.g., of the case where R is the set Q of rationals. /

Radicals may argue that the generalization to the nearly traditional test
statistics is too timid, that there are natural examples of nominal test statistics
with more general ordered codomains. We agree.

2.3 A general notion of test statistic

Definition 2.9. Let O and R be ordered sets. R is O-long if there is an
embedding of (i.e., an order-preserving map from) O into R; otherwise R is
O-short.
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In Example 1.1 we mentioned that ω1 is the set of all countable ordinals
and that ordinals are naturally ordered by inclusion. Think of any ordinal α as
the linear order of the smaller ordinals, e.g., ω1 as the linear order of countable
ordinals.

We are particularly interested in ω1-short ordered sets. There is a useful
positive characterization of such ordered sets. Recall that sets X,Y of points
of an order ≤ are cofinal if for every x ∈ X there is y ≥ x in Y and if for every
y ∈ Y there is x ≥ y in X (and coinitial is defined symmetrically).

Proposition 2.10. Let R be an ordered set. The following claims are equiva-
lent.

1. R is ω1-short.

2. Every nonempty subset X of R includes a sequence x1 ≤ x2 ≤ · · · cofinal
with X.

3. Any probability measure P on R measuring all initial segments (−∞, x] is
continuous from below in the following sense. For every subset X of R,
the initial segment

⋃
x∈X(−∞, x] is measured by P and

P

( ⋃
x∈X

(−∞, x]

)
= sup

x∈X
P(−∞, x]. (3)

Here and below, presenting a sequence in the form

x1 < x2 < · · · , or x1 ≤ x2 ≤ · · · , or

x1 > x2 > · · · , or x1 ≥ x2 ≥ · · · ,

we presume that the indices range over the positive integers. Also, we use the
convention that the supremum of the empty set of probabilities is zero and the
infimum of the empty set of probabilities is one.

Proof.

1 =⇒ 2 We prove the implication 1 =⇒ 2 by contrapositive. Assume that X
is a nonempty subset of R such that no sequence x1 ≤ x2 ≤ · · · in X is
cofinal with X. We construct an embedding of ω1 into R. Choose η(0)
arbitrarily in X. Suppose that β is a countable ordinal and a (possibly
transfinite) sequence 〈η(α) : α < β〉 has been constructed. The sequence
contains only countably many elements and thus cannot be cofinal with
X. Choose η(β) in X greater than all η(α) with α < β. This way we
construct the desired embedding 〈η(α) : α < ω1〉.

2 =⇒ 3 Assume 2 and fix an arbitrary subset X of R. If X = ∅ then both
sides of Equation (3) are zero. Suppose that X 6= ∅. By 2, there is a
sequence x1 ≤ x2 ≤ · · · of points in X cofinal with X. Accordingly, it
suffices to prove that P(∪n(−∞, xn]) = supn P(−∞, xn], which follows
from the countable additivity of probability measures.
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3 =⇒ 1 Again we prove the desired implication by contrapositive. Assume
that there is an embedding η of ω1 into R and let X = Range η. We
construct a probability measure P for which Equation (3) fails. Without
loss of generality, X is cofinal in R. Let Σ be the p-minimal σ-algebra of
R. By Carathéodory’s extension theorem, to define P on Σ, it suffices to
define P on the initial segments (−∞, x] (in such a way that the conditions
of the theorem are satisfied, which we will check carefully later). Define
P(−∞, x] = 0 if X ∩ (−∞, x] is countable and P(−∞, x] = 1 otherwise.
Then the left side of Equation (3) is P(R) = 1 while the right side is 0.
It remains to check the applicability of Carathéodory’s theorem. To make
sure P is defined on a semi-ring, set P(∅) = 0 and P(x, y] = P(−∞, y]−
P(−∞, x] for all x < y. Let us first check that P(x, y] = 0 if X ∩ (x, y] is
countable and P(x, y] = 1 otherwise. The case whereX∩(x, y] is countable
is trivial, so let us assume that X ∩ (x, y] is uncountable. In this case we
have P(−∞, y] = 1 and, since (x, y] contains η(α) for a countable ordinal
α, P(−∞, x] = 0; by definition, this implies P(x, y] = 1. It remains to
check that P is σ-additive: if (x, y] = ∪∞n=1(xn, yn], where the union is
disjoint, then P(x, y] =

∑∞
n=1 P(xn, yn]. This follows immediately from

X ∩ (xn, yn] being uncountable for at most one n.

Remark 2.11. The argument in the proof of 1 =⇒ 2 is an instance of definition
by transfinite induction (in our case, over the countable ordinals). For details,
see the transfinite recursion theorem in [18, Section 18]. It becomes applicable
if we fix a choice function that maps every transfinite sequence 〈η(α) : α < β〉
in X for every countable ordinal β to η(β) ∈ X satisfying our desideratum (in
this particular case, η(β) being greater than all η(α) with α < β).

The reverse of the ordered set ω1 is known as ω∗1 . In other words, ω∗1 is the
set of all countable ordinals with the reverse order α < β ⇐⇒ β ∈ α. By
symmetry, Proposition 2.10 has the following corollary.

Corollary 2.12. Let R be an ordered set. The following two claims are equi-
valent.

1. R is ω∗1-short.

2. Every nonempty subset X of R includes a sequence x1 ≥ x2 ≥ · · · coinitial
with X.

Proposition 2.13. Suppose R is ω1-short. Any probability measure P on R
measuring all initial segments (−∞, x] is continuous from above in the following
sense. For any subset X of R,

P

( ⋃
x∈X

[x,∞)

)
= sup

x∈X
P[x,∞) (4)

(which includes the existence of all these probabilities).
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Proof. By Proposition 2.10, it suffices to check that the measurability of all
initial segments (−∞, x] implies the measurability of all final segments [x,∞),
i.e., the measurability of every initial segment (−∞, x). Suppose that every
(−∞, x] is measurable. By Proposition 2.10, for any x there exists a sequence
x1 ≤ x2 ≤ · · · cofinal with (−∞, x), so that (−∞, x) =

⋃
n(−∞, xn]. Hence

(−∞, x) is measurable.

Since

1−P

( ⋃
x∈X

[x,∞)

)
= P

( ⋂
x∈X

(−∞, x)

)
and

1− sup
x∈X

P[x,∞) = inf
x∈X

P(−∞, x),

(4) is equivalent to

P

( ⋂
x∈X

(−∞, x)

)
= inf

x∈X
P(−∞, x).

The definition of p-value is not symmetric with respect to order reversal.
Accordingly, in our context, the symmetry between ω1 and ω∗1 is limited. ω∗1 is
less dangerous than ω1. Replacing the order ω1 in Example 1.1 by the reverse
order ω∗1 leads to a p-value that is identically equal to 1, which is a valid p-
value (and occurs for very simple test statistics, e.g., whenever the size of f ’s
codomain is 1) albeit not useful. ω∗1-short orders have some desirable properties.
Corollary 2.12 and Proposition 2.13 indicate some of them. Others will will be
pointed out later. The following definition is borrowed from the literature on
linear orders; see [16] and [25, p. 88].

Definition 2.14. A linear order is short if it is ω1-short and ω∗1-short.

Now we are ready to introduce our general notion of test statistic.

Definition 2.15. A test statistic is a nominal test statistic whose codomain is
short.

Proposition 2.16. Any ordered set with second-countable order topology is
short. Thus every nearly traditional test statistic is a test statistic.

In particular, the real line R is short.

Proof. Let R be an ordered set with second-countable order topology. By Pro-
position 2.5, R is separable and has at most countably many jumps. Let C be
a countable set that is dense in R and contains all points involved in jumps.
Suppose toward a contradiction that η is an order-preserving or order-reversing
map from ω1 to R. We obtain uncountably many disjoint open nonempty inter-
vals (η(α), η(α+ 2)) where α is a limit ordinal. Each of these intervals contains
a point from C, which is impossible.
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3 Induced test statistics, p-functions, and p-values

3.1 Induced test statistics

Definition 3.1. Any test statistic f for a probability trial (Ω,Σ,P) induces a

traditional test statistic f̂(x) = P[f ≤ f(x)] on (Ω,Σ,P).

Lemma 3.2. If f is a test statistic then ˆ̂f = f̂ . In other words, any induced
test statistic is self-induced.

Proof. Let f be a test statistic for a probability trial T = (Ω,Σ,P) and R
be the codomain of f . By Definition 2.3, f induces a probability distribution
Pf (X) = P(f−1(X)) on R. To simplify notation, we omit the subscript f .

Let η(r) = P[f ≤ r], so that η(f(x)) = P[f ≤ f(x)] = f̂(x). If s ≤ r then
η(s) ≤ η(r). On the other hand,

η(s) ≤ η(r) ⇐⇒ either s ≤ r or else (s > r and η(s) = η(r))

⇐⇒ either s ≤ r or else (s > r and P(r, s] = 0).

For any r ∈ R, the set Sr = {s ∈ R : s > r and P(r, s] = 0} is measurable in
R and P(Sr) = 0. Indeed, by the definition of nominal test statistics, the initial
segments (−∞, t] of R are measurable. Since f is a genuine test statistic (rather
than just nominal), R is ω1-short and so there is a sequence s1 ≤ s2 ≤ · · · in
Sr cofinal with Sr so that Sr =

⋃
n(r, sn] and thus is measurable. Further,

P(∪n(r, sn]) = limn P(r, sn] = 0. Thus

0 = P(Sr) = P(f−1(Sr)) = P{y : f(y) > r and η(f(y)) = η(r)}.

Now we are ready to prove ˆ̂f(x) = f̂(x).

ˆ̂f(x) = P[f̂ ≤ f̂(x)] = P{y : η(f(y)) ≤ η(f(x))}
= P{y : f(y) ≤ f(x)}+ P{y : f(y) > f(x) and η(f(y)) = η(f(x))}

= P{y : f(y) ≤ f(x)} = P[f ≤ f(x)] = f̂(x).

Theorem 3.3. Let f be a traditional test statistic with values in the real segment
[0, 1]. The following claims are equivalent.

1. f is induced by some test statistic.

2. f is self-inducing, i.e., f̂ = f .

3. P[f ≤ ε] = ε for every ε ∈ Range f .

Proof. Obviously 2 implies 1. By Lemma 3.2, 1 implies 2. It suffices to prove
that 2 and 3 are equivalent.

2 =⇒ 3 Assume 2 and let ε = f(x) for some x. We have

P[f ≤ f(x)] = f̂(x) = f(x) = ε.
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3 =⇒ 2 Assume 3. Given a sample point x, let ε = f(x). We have

f̂(x) = P[f ≤ f(x)] = P[f ≤ ε] = ε = f(x).

The definition of the induced test statistic f̂ can be extended to the case
where f is only a nominal test statistic. But the following proposition empha-
sizes the important role of the property of being ω1-short.

Proposition 3.4. Let R be an ω1-long ordered set. There exists an R-valued
nominal test statistic f such that P[f̂ ≤ 0] = 1 even though 0 ∈ Range f̂ .

Proof. Fix an embedding η of ω1 into R, and let

L = {x ∈ R : x ≤ η(α) for some α ∈ ω1}.

Let Σ be the least σ-algebra on R that contains the initial segments (−∞, x]
and also contains L.

For every member X of Σ, either X or R−X contains at most a countable
subset of Range η. Indeed, every initial segment of the form (−∞, x] and L have
this property, and the property is preserved by complementation and countable
unions.

Define a probability measure P on Σ as follows: If X contains at most a
countable subset of Range η then P(X) = 0; otherwise P(X) = 1.

The desired nominal test statistic f is the identity function on R. It is easy
to see that x ∈ L if and only if f̂(x) = P[f ≤ f(x)] = 0. So P[f̂ ≤ 0] = P(L) =
1.

3.2 p-functions and p-values

We want to define p-functions and p-values in such a way that p-values are
the values of p-functions. It is tempting to define a p-function as a traditional
test statistic f̂ induced by some test statistic f . By Theorem 3.3, we have
P[f ≤ ε] = ε for any ε ∈ Range f . But in practice people also use conservative
p-values. To accommodate this practice, we give a more general definition of
p-functions.

Definition 3.5.

• A p-function is a traditional test statistic f with values in the real segment
[0, 1] such that P[f ≤ ε] ≤ ε for every ε ∈ [0, 1].

• A p-function f is range-exact if P[f ≤ ε] = ε for every ε ∈ Range f ;
otherwise f is conservative.

• A p-function f is everywhere exact or simply exact if P[f ≤ ε] = ε for
every ε ∈ [0, 1].
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If f is a p-function then cf is a p-function for every c ≥ 1. Indeed

P[cf ≤ ε] = P[f ≤ ε/c] ≤ ε/c ≤ ε.

If c ∈ (0, 1) then cf may not be a p-function. In particular if P[f ≤ ε] = ε for
at least one ε > 0 then cf is not a p-function because, for that ε, we have

P[cf ≤ cε] = P[f ≤ ε] = ε > cε.

Theorem 3.6. Let f be a traditional test statistic with values in the real segment
[0, 1]. The following claims are equivalent.

1. f is an induced test statistic.

2. f is a range exact p-function.

Proof. 2 implies 1 by Theorem 3.3. To prove the other implication, assume 1.
By Theorem 3.3, P[f ≤ ε] = ε for any ε ∈ Range f . It remains to prove that
P[f ≤ ε] ≤ ε for every ε ∈ [0, 1]− Range f .

Let ε ∈ [0, 1] − Range f , S = {s ∈ Range f : s < ε} and ε0 = supS. If
S = ∅ then [f ≤ ε] = ∅ and P[f ≤ ε] = 0 ≤ ε. Otherwise there is a sequence
s1 ≤ s2 ≤ · · · of reals in S converging to ε0. Then

P[f ≤ ε] = P[f ≤ ε0] = P

( ∞⋃
n=1

[f ≤ sn]

)
= lim

n→∞
P ([f ≤ sn]) = lim

n→∞
sn = ε0 ≤ ε.

Definition 3.7. Let F be a p-function for some probability trial T = (Ω,Σ,P).
For any outcome x ∈ Ω, the number F (x) is the p-value associated with the
test statistic F and the outcome x. If F is an induced test statistic and f is any
test statistic for T inducing F then F (x) is also the p-value associated with f
and x. If P[F ≤ F (x)] = F (x) then the p-value F (x) is exact ; otherwise it is
conservative.

4 Diffuse test statistics and exact p-functions

We are particularly interested in exact p-functions f(x), the p-functions with
P[f ≤ ε] = ε for all ε ∈ [0, 1]. Classical parametric statistics is a rich source of
exact p-functions; randomized p-values (discussed in the next section) is another
important example.

Recall that an atom in a probability space T is an event (i.e., a measurable
set) of positive probability that cannot be split into a disjoint union of two
events of positive probability. T is diffuse if it has no atoms. Every singleton
event of positive probability is an atom. In Example 1.1, the complement of
every countable set is an atom.
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Lemma 4.1. Let R be a short ordered set as well as a probability space where
all initial segments (−∞, r] are measurable. R is diffuse if and only if it has no
singleton atoms.

Proof. The “only if” implication is trivial. To prove the “if” implication, sup-
pose toward a contradiction that R has no singleton atoms and yet it does
have an atom A. The subset A by itself is a short ordered set. If Σ is the
σ-algebra of R, and P is the probability measure on Σ, consider the σ-algebra
ΣA = {A ∩ X : X ∈ Σ} and restrict P to ΣA. In the rest of the proof, we
work with A. Without loss of generality, we may assume that A is the whole
R. Accordingly R itself is an atom in R.

Obviously P(R) = 1. Since R is an atom, for any X ∈ Σ, the probability
P(X) is either 0 or 1. Notice that every singleton set {r} is measurable in R.
Indeed, (−∞, r] is measurable, so it suffices to prove that (−∞, r) is measurable.
By Proposition 2.10, there is a sequence x1 ≤ x2 ≤ · · · converging to r, and so
(−∞, r) is a countable union of measurable sets.

Let I be the set of points x ∈ R with P(−∞, x] = 0 (it is an initial segment,
in the sense of containing any y such that y ≤ x for some x ∈ I). By the
continuity from below, see Equation (3),

P(I) = P

(⋃
x∈I

(−∞, x]

)
= sup

x∈I
P(−∞, x] = 0.

Let F be the final segment R − I. For any y ∈ F , P(−∞, y] = 1 and therefore
P(y,∞) = 0. Since singleton sets are measurable in R and R has no singleton
atoms, every P[y,∞) = P{y} + P(y,∞) = 0. By the continuity from above,
see Equation (4),

P(F ) = P

(⋃
x∈F

[x,∞)

)
= sup

x∈F
P[x,∞) = 0.

Thus P(R) = P(I) + P(F ) = 0, which gives us the desired contradiction.

Call a nominal test statistic f on a probability trial T = (Ω,Σ,P) diffuse
if the probability distribution Pf that f induces on its codomain R is diffuse.
If R is short then, by Lemma 4.1, the test statistic f is diffuse if and only if
P(f−1(r)) = Pf (r) = 0 for every point r ∈ R.

Proposition 4.2. Let f be a diffuse test statistic. Then the induced test
statistic f̂ is diffuse.

Proof. The codomain [0, 1] of f̂ is short, and every singleton set in [0, 1] is

measurable. By Lemma 4.1 it suffices to prove that P[f̂ = ε] = 0 for every

ε ∈ Range f̂ . Fix such a number ε. Since ε ∈ Range f̂ , the set X = {x : f̂(x) =
ε} 6= ∅. Let R0 = {f(x) : x ∈ X}.

We use the notation and results established in the proof of Lemma 3.2. If
x ∈ X and r = f(x), we have ε = f̂(x) = P[f ≤ r] = η(r) and so [f̂ = ε] = {y :
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f̂(y) = f̂(x)} = {y : η(f(y)) = η(r)}. Let U(r) = {y : f(y) ≥ r and η(f(y)) =
η(r)} and U ′(r) = {y : f(y) > r and η(f(y)) = η(r)}. In the proof of Lemma 3.2
we established that P(U ′(r)) = 0. But U(r) = U ′(r)∪f−1(r). Since f is diffuse,
P(f−1(r)) = Pf (r) = 0 and so P(U(r)) = 0.

If r = minR0 then P[f̂ = ε] = P[f̂ = η(r)] = P(U(r)) = 0. Suppose that
R0 does not have a minimal element. Since R is short, there exists a sequence
r1 > r2 > . . . in R0 that is coinitial with R0. We have

P[f̂ = ε] = P

(⋃
n

U(rn)

)
= 0.

Theorem 4.3. Let f be a diffuse test statistic. Then the induced test statistic
f̂ is an exact p-function.

Proof. By Theorem 3.6, f̂ is a range-exact p-function, so that P[f ≤ ε] ≤ ε

for ε ∈ [0, 1] and P[f ≤ ε] = ε for all ε ∈ Range f̂ . It remains to prove that

P[f ≤ ε] = ε for every ε ∈ [0, 1]− Range f̂ . Fix such a number ε.

Let ε0 = sup{δ ∈ Range f̂ : δ < ε} and ε1 = inf{δ ∈ Range f̂ : δ > ε}.
Our convention here is that sup ∅ = 0 and inf ∅ = 1. There exists a sequence
δ1 ≤ δ2 ≤ · · · in Range f̂ that converges to ε0, so that

P[f̂ ≤ ε0] = lim
n

P[f̂ ≤ δn] + P[f̂ = ε0] = lim
n
δn + 0 = ε0.

Similarly, there is a sequence δ1 ≥ δ2 ≥ · · · in Range f̂ that converges to ε1, so
that

P[f̂ ≥ ε1] = P[f̂ = ε1] + lim
n

P[f̂ > δn] = lim
n

(1− δn) = 1− ε1.

We have
1 = P[f̂ ≤ ε0] + P[f̂ ≥ ε1] = ε0 + (1− ε1),

so that ε0 = ε1 = ε and P[f̂ ≤ ε] = P[f̂ ≤ ε0] = ε0 = ε.

Proposition 4.4. If R is an ω∗1-long (and ω1-short) linearly ordered set endo-
wed with the p-minimal σ-algebra then there is an R-valued diffuse nominal test
statistic f such that f̂ is not an exact p-function.

Proof. Consider a trial T = (Ω,Σ,P) where Ω,Σ,P are as follows.

• Ω is ω∗1 , i.e., the set of countable ordinals with the reverse order α <
β ⇐⇒ β ∈ α.

• Σ is the p-minimal σ-algebra on Ω. It consists of the countable subsets of
Ω and their complements.

• P(X) = 0 if X is countable. In particular, every P(−∞, α] = 1.

12



Since R is ω∗1-long, there is an order isomorphism η from ω∗1 into R; η is
an R-valued nominal test statistic on T . Indeed, since the σ-algebra of R is
p-minimal, it suffices to show that every η−1(−∞, r] ∈ Σ. Since ω1 is well-
ordered, every X ⊆ ω1 has a minimal point in ω1; accordingly every X ⊆ ω∗1
has a maximal point in ω∗1 . In particular, let y = max{α ∈ ω∗1 : η(α) ≤ r}.
Accordingly, η−1(−∞, r] = η−1(−∞, η(y)] = (−∞, y] ∈ Σ.

Since P takes only two values, the induced p-function η̂ takes only two values
and thus is not exact.

5 Randomized p-values

In this section we discuss randomized p-values as a natural application of non-
traditional test statistics. Randomized p-values arise naturally in situations
where the distribution of the test statistic is not continuous. They are produced
by test statistics whose codomain is R × [0, 1] with the lexicographic order;
intuitively, we add a random number to a traditional test statistic to break ties
if there are any. This makes the distribution of a randomized p-value uniform
over the segment [0, 1] (as shown in Theorem 5.3 below).

As discussed in Appendix A, Egon Pearson [22] defended randomized p-
values in 1950, but he was mainly writing about the abstract notion. At this
time there are at least two (and probably many more) fields of applied statistics
and machine learning where randomized p-values are essential: multiple hypot-
hesis testing in bioinformatics (see, e.g., [12]) and on-line testing the hypothesis
of exchangeability using conformal martingales (see, e.g., [32, Section 7.1,] and
[34]). In both cases p-values are used repeatedly a large number of times, and
any non-uniformity of their distribution quickly accumulates and destroys the
power of the overall procedure. In the theory of conformal prediction, allowing
randomized p-values greatly simplifies and strengthens the main property of
validity (cf. [32, Theorem 8.1], which uses randomized p-values, with its prede-
cessor, [31, Theorem 1], which avoids randomization).

Recall that the product P1 × P2 of probability measures P1 and P2 on
measurable spaces (Ω1,Σ1) and (Ω2,Σ2) respectively is the unique probability
measure on (Ω1×Ω2,Σ1⊗Σ2) with P(X1×X2) = P1(X1) ·P2(X2) for X1 ∈ Σ1

and X2 ∈ Σ2. We are essentially in the situation of Example 2.8, except that
the assumption that the codomain of f is countable is dropped.

By Theorem 3.3, the induced p-function f of a test statistic is only guaran-
teed to satisfy the inequality P[f ≤ ε] ≤ ε, and very simple examples show that
P[f ≤ ε] < ε is indeed possible: e.g., take any ε ∈ (0, 1) when the sample space
is a singleton. Randomized p-values are a way of making f exact, i.e., achieving
the equality P[f ≤ ε] = ε for all ε ∈ [0, 1]. Informally, we enrich our probability
space by adding a random number generator and using its output for breaking
ties in values of the test statistic for different outcomes.

We need a couple of auxiliary results.

Lemma 5.1. If R and S are short orders, then the product R × S, ordered
lexicographically, is short.
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Proof. By symmetry it suffices to prove that R × S is ω1-short, i.e., that for
every well-ordered set A, if there exists an order preserving map η : A→ R×S,
then A is countable. Each η(a) has the form (ra, sa), and (ra, sa) < (rb, sb) if
and only if either ra < rb or else both ra = rb and sa < sb.

Since S is short, the set Ar = {a : ra = r} is countable for every r ∈ R. Since
A is well-ordered, the subset {minAr : Ar 6= ∅} of A is well ordered. Since R is
short, the well-ordered subset {η(minAr) : Ar 6= ∅} of R is countable, so that
there are only countable many nonempty sets Ar. Therefore A is a countable
union of countable sets, so that A is countable.

Lemma 5.2. Let (Ω1,Σ1,P1) and (Ω2,Σ2,P2) be probability spaces where every
singleton set is measurable, and form the product probability space

(Ω1 × Ω2,Σ1 ⊗ Σ2,P1 ×P2).

Every singleton set is measurable in the product space. Furthermore, the product
space has the property that the probability of every singleton event is zero if at
least one of the factors has this property.

Proof. By the definition of the product, P(X1×X2) = P1(X1) ·P2(X2) for any
X1 ∈ Σ1 and X2 ∈ Σ2. A singleton set in Ω has the form {x1} × {x2} and this
is measurable. The second claim follows from the fact that P({x1} × {x2}) =
P1{x1} ·P2{x2}.

Now we are ready to address the issue of randomized p-values. We start
from our usual setting of a given traditional test statistic f : Ω → R on a trial
T = (Ω,Σ,P). The output of a random number generator is modelled as the
trial ([0, 1],B,U), where B is the Borel σ-algebra on [0, 1] and U is the uniform
probability measure on ([0, 1],B). The overall trial is now the product

T̄ = (Ω̄, Σ̄, P̄) = (Ω× [0, 1],Σ⊗ B,P× U)

and the test statistic f on Ω is replaced by a finer test statistic

F (x, r) = (f(x), r) (5)

on Ω̄. The order on the codomain R× [0, 1] of F is lexicographic,

(p, r) ≤ (q, s) ⇐⇒ p < q or (p = q and r ≤ s).

Intuitively, this means that the impugning power of our test statistic is deter-
mined by f , and the outcome of the random number generator is only used
for tie breaking. Let us call all functions F that can be obtained in this way
randomized traditional test statistics. They have the following useful property.

Theorem 5.3. The induced p-function F̂ of any randomized traditional test
statistic F is exact, so that P̄[F̂ ≤ ε] = ε for any ε ∈ [0, 1].
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Proof. By Lemma 5.1, the codomain R × [0, 1] of F is short. It is easy to see
that all initial segments (−∞, x] of R×[0, 1] are measurable. By Lemma 4.1, the
PF -atoms, if any, of R× [0, 1] are singletons. By Lemma 5.2 and PF = Pf ×U
(cf. (5)), PF does not have singleton atoms and thus is diffuse. It remains to
apply Theorem 4.3.

It is easy to see that the theorem generalizes to the case where the component
f of test statistic F is any test statistic.

The value F̂ (x, r) is the randomized p-value corresponding to an outcome
x and random number r. But it is easy to see that the topology of the lex-
icographically ordered R × [0, 1] is not second-countable (not even separable).
According to Definition 2.6 and Proposition 2.5, the function F defined by (5)
is not a traditional or even nearly-traditional test statistic. But R and [0, 1] are
short, and so F is a test statistic according to Definition 2.15, as Lemma 5.1
shows.

Remark 5.4. When using randomized p-values, statisticians (and computer
scientists in related areas) do not usually emphasize the use of non-traditional
test statistics, which remain implicit. They prefer to define randomized p-values
from scratch rather than using the traditional definition (1). Namely, the usual
definition (as given in, e.g., [12] and [32]) is

F̂ (x, r) = P[f < f(x)] + rP[f = f(x)], (6)

where r is a random number in [0, 1]. The only explicit use of the lexicographic
order in connection with randomized p-values that we are aware of is in [6, p. 91,
(3.4)].

6 An alternative to randomizing p-values

Many practical statisticians dislike the idea of randomized p-values. A pioneer
of randomized p-values (Stevens on the last page of [26]) says: “We suppose
that most people will find repugnant the idea of adding yet another random
element to a result which is already subject to the errors of random sampling.”
When reporting on Anscombe’s previous work [1] he says that the method “was
there dismissed rather briefly as being unsatisfactory”. Egon Pearson [22] was
more positive but still admitted that there are “a number of objections” to the
use of the method, “which many statisticians would regard as decisive.”

A popular alternative to randomized p-values is mid-p-values, introduced
by Lancaster in 1961 [19], his motivation being that in some cases computing
randomized p-values may be “time-consuming and even embarrassing to the
statistician.” The mid-p-value is defined to be the following modification of (6):

P[f < f(x)] +
1

2
P[f = f(x)]; (7)

in other words it is defined to be the arithmetic mean of P[f < f(x)] and
P[f ≤ f(x)] (whereas the randomized p-value is distributed uniformly between
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P[f < f(x)] and P[f ≤ f(x)]). The corresponding mid-p-function maps each
outcome x ∈ Ω to the mid-p-value (7). The definition of mid-p-values is natural,
but the main problem with it is that mid-p-functions are not guaranteed to be
p-functions (and they are not p-functions in interesting cases).

In randomized p-values we complement a given test statistic by a random
number to break ties. We can easily imagine less repugnant (to use Stevens’s
expression) ways of tie-breaking using the lexicographic order on R2 (or Rk for
k > 2). In this section we will discuss several specific examples, but it will
be clear that the approach is general. Although mathematically less elegant
than randomizing p-values, it reduces the conservativeness of p-functions while
maintaining their validity.

Wilcoxon’s rank-sum test [33, 11] is the workhorse of nonparametric statis-
tics. It is used for comparing two groups of observations (real numbers),

x1, . . . , xm and y1, . . . , yn;

for simplicity we will assume that these observations are all different. The test
statistic Rx is the sum of the ranks of the first m observations, in this case
the sum of the ranks of x1, . . . , xm, where all m + n observations are ranked
from 1 (the smallest) to m+ n (the largest). The p-value corresponding to the
given value Rx of the test statistic is the probability that R′x ≤ Rx. Here R′x is
obtained by applying the test statistic to a random permutation z1, . . . , zm+n

of the m+ n observations; in other words R′x is the sum of the ranks of obser-
vations z1, . . . , zm. Intuitively, we are testing the null hypothesis that all m+n
observations are drawn independently from the same continuous distribution on
the real line against the alternative that the xs tend to be smaller than the ys.

Wilcoxon’s rank-sum test is remarkably efficient (see, e.g., [21, Section II.4]),
but its p-values have a discrete distribution; first of all, it is clear that this
distribution is concentrated on the set{

1(
m+n
m

) , 2(
m+n
m

) , . . . , 1} ,
as for any permutation test. For example, when m = n = 6, it is concentrated
on the set {1/924, 2/924, . . . , 1}. However, Table 5.1 in [24, Chapter 5] shows
that Wilcoxon’s test statistic is much cruder: it takes values in the set

{1/924, 2/924, 4/924, 7/924, 12/924, 19/924, 30/924, 43/924, 61/924, . . . , 1}

(where the ellipsis does not imply that the reader is supposed to be able to fill
in the missing values).

To partially break the ties between the values of the test statistic (this is
the only kind of ties we are interested in since all observations were assumed
to be different), we can complement Rx by the value T2 of the Fisher–Yates–
Terry statistic, which is computed similarly to Rx but applies a monotonic
transformation to all the ranks changing the sums of ranks accordingly. The new
test statistic, (Rx, T2), takes values in R2 equipped with the lexicographic order.

16



The p-value corresponding to the given value of (Rx, T2) is the probability that
(R′x, T

′
2) ≤ (Rx, T2), where (R′x, T

′
2) is computed by applying the test statistic

to a random permutation of our m + n observations. The range of the new
p-function will be extended by adding the points in

{5/924, 8/924, 10/924, 14/924, 15/924, 17/924, 21/924,

22/924, 24/924, 26/924, 28/924, 32/924, 34/924, 35/924,

37/924, 39/924, 40/924, 42/924, 48/924, 49/924, . . . },

as the same table in [24] shows (although we suspect that Pratt and Gibbons’s
results may be affected by the limited numeric accuracy of their calculations).

Lots of numbers of the form k/924, k = 1, 2, . . . , are still missing, so we
might add the van der Waerden statistic T3, which is similar to T2 but uses
a slightly different monotonic transformation. Now the combined test statistic
(Rx, T2, T3) takes values in R3 with the lexicographic order. However, adding
T3 will only add one number, 41/924, to the intersection of the range of the p-
function and [0, 49/924]. The reason for this poor tie-breaking performance of T3
is that the test statistics T2 and T3 are so similar: both are based on monotonic
transformations of ranks defined in terms of the Gaussian distribution. One way
to break the ties more efficiently is to replace T3 by a test statistic analogous
to T2 or T3 but based on, e.g., monotonic transformations of ranks defined in
terms of the Laplace distribution (popular in robust statistics).

An advantage of all these non-traditional test statistics is that the correspon-
ding p-function will be valid (in the sense of (2)) whenever the observations are
generated independently from the same continuous probability distributions on
R, and no parametric assumptions are required. A disadvantage is that even
in the ideal situation (from the point of view of breaking ties) the range of the
test statistic is {1/924, 2/924, . . . , 1} (where we revert to the normal use of the
ellipsis: the reader is expected to fill it in). Therefore, the distribution is still
not uniform on [0, 1], although it is uniform on {1/924, 2/924, . . . , 1} (and so
“almost uniform” on [0, 1]). In the rest of this section we will assume that we
are in this ideal situation.

A drastic step perfectly breaking all ties (with probability one) but partly
sacrificing the non-parametric character of the test is to add Student’s [15] t-
statistic

t =
x̄− ȳ
S

,

where we ignore an irrelevant constant factor and use the notation

x̄ =
1

m

m∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi,

S =

√√√√ m∑
i=1

(xi − x̄)2 +

n∑
i=1

(yi − ȳ)2,
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to the list (Rx, T2, . . . ), with the order on (Rx, T2, . . . , t) still being lexicographic.
The p-value corresponding to a given value of (Rx, T2, . . . , t) is the probability
that (R′x, T

′
2, . . . , t

′) ≤ (Rx, T2, . . . , t), where (R′x, T
′
2, . . . , t

′) is computed by ap-
plying the test statistic to a random sample of size m+ n drawn independently
from the standard Gaussian distribution. Because of the nonparametric na-
ture of the test statistics preceding t, the resulting p-function f will satisfy
P[f ≤ ε] = ε for any ε ∈ {1/924, 2/924, . . . , 1} and the power P = Pm+n of
any continuous probability distribution P on R. On the other hand, we will
have P[f ≤ ε] = ε for any ε ∈ [0, 1] and the power P = Pm+n of any Gaussian
distribution P on the real line.

Remark 6.1. In principle, we could have used only traditional test statistics in
this section since even the most complicated of our test statistics, (Rx, T2, . . . , t)
used in the last paragraph, had all components but one taking values in discrete
sets. As we know, such orders can be embedded in the real line. However,
the resulting traditional test statistic would be awkward, and it is much more
natural to think in terms of the original test statistic, such as (Rx, T2, . . . , t)
(cf. Example 2.8). And even for a practical statistician, it may be reassuring to
know that she is on safe ground when using any Rk-valued test statistics (with
the lexicographic order on Rk).

7 A summary

This paper’s aim has been to investigate advantages and drawbacks of various
classes of nominal test statistics. If forced to choose one class, our recommen-
dation would be to use the class of test statistics (i.e., nominal test statistics
with short codomains). In view of Theorem 3.3 and Proposition 3.4, this will
lead to valid p-values (but possibly conservative p-functions). By Theorem 4.3,
the corresponding p-functions will be exact in the case of diffuse test statistics.
Finally, Theorem 5.3 is applicable to any test statistic (as we say after its proof)
and allows us to define exact p-functions by using the device of randomization.
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[6] Elise Coudin. Inférence exacte et non paramétrique dans les modèles de
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forme arbitraire. PhD thesis, University of Montreal, 2007.

[7] Herbert A. David. First (?) occurrence of common terms in statistics and
probability. American Statistician, 49:121–133, 1995.

[8] Herbert A. David. First (?) occurrence of common terms in statistics and
probability—a second list, with corrections. American Statistician, 52:36–
40, 1998.

[9] Herbert A. David. First (?) occurrence of common terms in statistics and
probability. In Herbert A. David and Anthony W. F. Edwards, editors,
Annotated Readings in the History of Statistics, pages 209–246 (Appendix
B). Springer, New York, 2001. This list subsumes the 1995 and 1998 lists
[7, 8].

[10] W. Edwards Deming. Statistical Adjustment of Data. Wiley, New York,
1943.

[11] Gustav Deuchler. über die methoden der korrelationsrechnung in der
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A History of p-values

In the applications of statistics, the results of hypothesis testing are almost
invariably packaged as p-values. However, it’s difficult to pinpoint when exactly
the term was introduced; it developed slowly and informally. The expression
“p-value” has a whiff of barbarity about it, and there are at least a dozen
(3× 22) different ways of writing it. Do you capitalize “p”? (If not in general,
do you capitalize it at the start of a sentence?) Do you set it in italics? Do
you put a hyphen after it? We will ignore such differences in this discussion.
But even then, the list of alternative expressions is bewildering. Herbert A.
David’s list [9, p. 211] includes 9 such expressions: probability level, sample level
of significance, observed significance level, significance probability, descriptive
level of significance, critical level, significance level, prob-value, and associated
probability. And that list is clearly incomplete: e.g., “achieved significance
level” (usually abbreviated to ASL) and “attained significance level” are also
popular.

The situation with the notion (rather than the term) of p-value is different,
and it has a long and venerable history. To our knowledge, the first p-value was
computed by John Arbuthnott in 1710 [2]; having observed that the number
of male births in London exceeded the number of female births during each of
the 82 years from 1629 to 1710, he rejected the null hypothesis of even chances
for the birth of male or female. He evaluated the p-value, which he referred to
using the generic term “lot”, as 2−82. This was, however, a very special case
as the value attained by his chosen test statistic (the number of years in which
more males were born) was extreme (82 out of 82). The p-value was one-sided,
which was justified because, in Arbuthnott’s words, “the external accidents to
which are males subject (who must seek their food with danger) do make a great
havock of them.”

As far as we know, the first clean calculation of a p-value corresponding to
a non-extreme value of a test statistic was that given by Daniel Bernoulli in his
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1735 paper [3]. In 1732, the Academy of Sciences of Paris had set a prize for the
following problem: “What is the physical cause of the inclination of the planes
of the planetary orbits in relation to the plane of revolution of the Sun about its
axis; and what is the reason for the inclinations of these orbits to differ among
themselves” (translation by Hald [17]). None of the memoirs submitted was
deemed to be worthy of the prize, and in 1734 the Academy proposed the same
subject again with a double prize, which was awarded to John Bernoulli and
his son Daniel. The key problem to explain was the small inclinations of the
planetary orbits of all six known planets (Mercury, Venus, Earth, Mars, Jupiter,
and Saturn) to the plane of the Sun’s equator. Before looking for a physical
cause, Daniel Bernoulli set out to investigate whether chance alone would be a
feasible explanation. In modern terminology, his null hypothesis was that the
six inclinations were chosen randomly (from the uniform distribution on the
interval [0, 90◦]), and his test statistic was their maximum. He computes the
actual value of the test statistic as 7◦30′, achieved for the Earth (according to
1701 data that he used), and finds the p-value as

(7◦30′/90◦)6 = 1/126 = 1/2, 985, 984

([3], pp. 98–99, [30], p. 223, [17], p. 69). The way he states this result, however,
is reminiscent of the modern confusion between p-values and probabilities: “if
all the orbits [orbital planes] were placed randomly with respect to the Sun’s
equator, I would bet 2985983 against 1 that they would not be so close.” We
can criticize, on physical grounds, his choice of the null hypothesis, but from the
statistical point of view his calculation is sound (which cannot be said about
two other, more Earth-centered, p-values calculated in the same paper).

Another influential (albeit less clean) calculation of a p-value was that in
Laplace’s 1823 paper [20] devoted to atmospheric tides, a more difficult object
of study than ocean tides. It is described in detail in, e.g., [27, Section 4] and
[28, Chapter 4], and it is given by David [9] as the first (?) appearance of the
notion of p-value (“(?)” standing for “to his knowledge”).

Karl Pearson in his famous 1900 paper [23] about the χ2 test and Ronald A.
Fisher in his 1925 textbook [14] initiated the large-scale use of p-values. Pearson
used P as his notation for p-values, and on three occasions referred to it as “the
value of P” (crucially, the caption of his table of p-values for χ2 given at the
end of the paper is “Values of P for. . . ”). Fisher’s textbook used “value of
P” and simply “P” interchangeably. According to David [8], the “value of P”
first (?) morphed into “P value” in [10, Remark on p. 30] (which is a great
progress since his previous paper [7], according to which this happened in a
1960 book). Deming’s use of the form “P values” is consistent with his use of
the notation P (f) to refer to the p-values produced by a test statistic f (such
as Karl Pearson’s χ or Fisher’s z).

Randomized p-values might have been first introduced in print explicitly
and in a fairly general form (for integer-valued test statistics) by Stevens in
1950 [26, Section 4]. Shortly before that, Anscombe in his discussion paper [1]
had introduced randomized p-values in the special cases of Fisher’s exact test
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(Section 5.07) and confidence bounds for the parameter of the Bernoulli model
(Section 5.17, slightly less explicitly). But even at the time, this was not a novel
idea: e.g., Egon Pearson in his 1950 paper [22] defending randomized p-values
says: “The possibility of this conversion has been recognized by statisticians for
a number of years” (Section 1); here “conversion” is his term for complementing
the test statistic by a separate “random experiment.” At about the same time,
but less explicitly, randomized p-values were used by Eudey [13] and Tocher [29].
Randomized p-values were later used in the well-known book [24] (Section 1.5.5).
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