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Abstract

This paper applies conformal prediction to derive predictive distributions that
are valid under a nonparametric assumption. Namely, we introduce and explore
predictive distribution functions that always satisfy a natural property of valid-
ity in terms of guaranteed coverage for IID observations. The focus is on a pre-
diction algorithm that we call the Least Squares Prediction Machine (LSPM).
The LSPM generalizes the classical Dempster–Hill predictive distributions to
nonparametric regression problems. If the standard parametric assumptions for
Least Squares linear regression hold, the LSPM is as efficient as the Dempster–
Hill procedure, in a natural sense. And if those parametric assumptions fail,
the LSPM is still valid, provided the observations are IID.
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Let me conclude by observing that A(n) is supported
by all of the serious approaches to statistical inference.
It is Bayesian, fiducial, and even a confidence/tolerance
procedure. It is simple, coherent, and plausible. It can
even be argued, I believe, that A(n), along with H(n),
constitutes the fundamental solution to the problem of
induction.

Bruce M. Hill, 1988

To be truly useful, however, the methods need
extension to regression models with unknown
regression parameters.

Christian Genest and Jack Kalbfleisch, 1988

1 Introduction

This paper applies conformal prediction to derive predictive distribution func-
tions that are valid under a nonparametric assumption. In our definition of
predictive distribution functions and their property of validity we follow Shen
et al. (2018, Section 1), whose terminology we adopt, and Schweder and Hjort
(2016, Chapter 12), who use the term “prediction confidence distributions”. The
theory of predictive distributions as developed by Schweder and Hjort (2016)
and Shen et al. (2018) assumes that the observations are generated from a para-
metric statistical model. We extend the theory to the case of regression under
the general IID model (the observations are generated independently from the
same distribution), where the distribution form does not need to be specified;
however, our exposition is self-contained. Our predictive distributions general-
ize the classical Dempster–Hill procedure (to be formally defined in Section 5),
which these authors referred to as direct probabilities (Dempster) and A(n)/H(n)

(Hill). For a well-known review of predictive distributions, see Lawless and Fre-
dette (2005). The more recent review by Gneiting and Katzfuss (2014) refers
to the notion of validity used in this paper as probabilistic calibration and de-
scribes it as critical in forecasting; Gneiting and Katzfuss (2014, Section 2.2.3)
also give further references.

We start our formal exposition by defining conformal predictive distributions
(CPDs), nonparametric predictive distributions based on conformal prediction,
and algorithms producing CPDs (conformal predictive systems, CPSs) in Sec-
tion 2; we are only interested in (nonparametric) regression problems in this
paper. An unusual feature of CPDs is that they are randomized, although they
are typically affected by randomness very little. The starting point for conformal
prediction is the choice of a conformity measure; not all conformity measures
produce CPDs, but we give simple sufficient conditions. In Section 3 we apply
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the method to the classical Least Squares procedure obtaining what we call the
Least Squares Prediction Machine (LSPM). The LSPM is defined in terms of re-
gression residuals; accordingly, it has three main versions: ordinary, deleted, and
studentized. The most useful version appears to be studentized, which does not
require any assumptions on how influential any of the individual observations is.
We state the studentized version (and, more briefly, the ordinary version) as an
explicit algorithm. The next two sections, 4 and 5, are devoted to the validity
and efficiency of the LSPM. Whereas the LSPM, as any CPS, is valid under
the general IID model, for investigating its efficiency we assume a parametric
model, namely the standard Gaussian linear model. The question that we try
to answer in Section 5 is how much we should pay (in terms of efficiency) for the
validity under the general IID model enjoyed by the LSPM. We compare the
LSPM with three kinds of oracles under the parametric model; the oracles are
adapted to the parametric model and are only required to be valid under it. The
weakest oracle (Oracle I) only knows the parametric model, and the strongest
one (Oracle III) also knows the parameters of the model. In important cases the
LSPM turns out to be as efficient as the Dempster–Hill procedure. All proofs
are postponed to Section 6, which also contains further discussions. Section 7 is
devoted to experimental results demonstrating the validity and, to some degree,
efficiency of our methods. Finally, Section 8 concludes and lists three directions
of further research, started in Vovk et al. (November 2019 (first posted March
2018).

Another method of generating predictive distributions that are valid under
the IID model is Venn prediction (Vovk et al., 2005, Chapter 6). An advantage
of the method proposed in this paper is that it works in the case of regression,
whereas Venn prediction, at the time of writing of this paper, was only known to
work in the case of classification (see, however, the recent paper by Nouretdinov
et al. 2018, discussed in Section 8).

The conference version of this paper (Vovk et al., 2017), announcing the
main results, was published in the Proceedings of COPA 2017. This expanded
version includes proofs and further discussions.

A significant advantage of conformal predictive distributions over traditional
conformal prediction is that the former can be combined with a utility function
to arrive at optimal decisions. A first step in this direction has been made in
Vovk and Bendtsen (December 2018 (first posted July 2017) (developing ideas
of the conference version of this paper).

2 Randomized and conformal predictive distri-
butions

We consider the regression problem with p attributes. Correspondingly, the
observation space is defined to be Rp+1 = Rp × R; its element z = (x, y),
where x ∈ Rp and y ∈ R, is interpreted as an observation consisting of an
object x ∈ Rp and its label y ∈ R. Our task is, given a training sequence of
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observations zi = (zi, yi), i = 1, . . . , n, and a new test object xn+1 ∈ Rp, to
predict the label yn+1 of the (n+ 1)st observation. Our statistical model is the
general IID model: the observations z1, z2, . . ., where zi = (xi, yi), are generated
independently from the same unknown probability measure P on Rp+1.

We start from defining predictive distribution functions following Shen et al.
(2018, Definition 1), except that we relax the definition of a distribution function
and allow randomization. Let U be the uniform probability measure on the
interval [0, 1].

Definition 1. A function Q : (Rp+1)n+1 × [0, 1] → [0, 1] is called a randomized
predictive system (RPS) if it satisfies the following three requirements:

R1a For each training sequence (z1, . . . , zn) ∈ (Rp+1)n and each test object
xn+1 ∈ Rp, the function Q(z1, . . . , zn, (xn+1, y), τ) is monotonically in-
creasing both in y ∈ R and in τ ∈ [0, 1] (where “monotonically increasing”
is understood in the wide sense allowing intervals of constancy). In other
words, for each τ ∈ [0, 1], the function

y ∈ R 7→ Q(z1, . . . , zn, (xn+1, y), τ)

is monotonically increasing, and for each y ∈ R, the function

τ ∈ [0, 1] 7→ Q(z1, . . . , zn, (xn+1, y), τ)

is monotonically increasing.

R1b For each training sequence (z1, . . . , zn) ∈ (Rp+1)n and each test object
xn+1 ∈ Rp,

lim
y→−∞

Q(z1, . . . , zn, (xn+1, y), 0) = 0 (1)

and
lim
y→∞

Q(z1, . . . , zn, (xn+1, y), 1) = 1.

R2 As function of random training observations z1 ∼ P ,. . . , zn ∼ P , a random
test observation zn+1 ∼ P , and a random number τ ∼ U , all assumed
independent, the distribution of Q is uniform:

∀α ∈ [0, 1] : P {Q(z1, . . . , zn, zn+1, τ) ≤ α} = α.

The output of the randomized predictive system Q on a training sequence
z1, . . . , zn and a test object xn+1 is the function

Qn : (y, τ) ∈ R× [0, 1] 7→ Q(z1, . . . , zn, (xn+1, y), τ), (2)

which will be called the randomized predictive distribution (function) (RPD)
output by Q. The thickness of an RPD Qn is the infimum of the numbers ϵ ≥ 0
such that the diameter

Qn(y, 1)−Qn(y, 0) (3)
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of the set
{Qn(y, τ) | τ ∈ [0, 1]} (4)

is at most ϵ for all y ∈ R except for finitely many values. The exception size
of Qn is the cardinality of the set of y for which the diameter (3) exceeds the
thickness of Qn. Notice that a priori the exception size can be infinite.

In this paper we will be interested in RPDs of thickness 1
n+1 with exception

size at most n, for typical training sequences of length n (cf. (17) below). In all
our examples, Q(z1, . . . , zn, zn+1, τ) will be a continuous function of τ . There-
fore, the set (4) will be a closed interval in [0, 1]. However, we do not include
these requirements in our official definition.

Four examples of predictive distributions are shown in Figure 5 below as
shaded areas; let us concentrate, for concreteness, on the top left one. The
length of the training sequence for that plot (and the other three plots) is
n = 10; see Section 7 for details. Therefore, we are discussing an instance of
Q10, of width 1/11 with exception size 10. The shaded area is {(y,Q10(y, τ)) |
y ∈ R, τ ∈ [0, 1]}. We can regard (y, τ) as a coordinate system for the shaded
area. The cut of the shaded area by the vertical line passing through a point y
of the horizontal axis is the closed interval [Q(y, 0), Q(y, 1)], where Q := Q10.
The notation Q(y) for the vertical axis is slightly informal.

Next we give basic definitions of conformal prediction adapted to producing
predictive distributions (there are several equivalent definitions; the one we
give here is closer to Vovk et al. 2005, Section 2.2, than to Balasubramanian
et al. 2014, Section 1.3). A conformity measure is a measurable function A :
(Rp+1)n+1 → R that is invariant with respect to permutations of the first n
observations: for any sequence (z1, . . . , zn) ∈ (Rp+1)n, any zn+1 ∈ Rp+1, and
any permutation π of {1, . . . , n},

A(z1, . . . , zn, zn+1) = A
(
zπ(1), . . . , zπ(n), zn+1

)
. (5)

Intuitively, A measures how large the label yn+1 in zn+1 is, based on seeing the
observations z1, . . . , zn and the object xn+1 of zn+1. A simple example is

A(z1, . . . , zn+1) := yn+1 − ŷn+1, (6)

ŷn+1 being the prediction for yn+1 computed from xn+1 and z1, . . . , zn as train-
ing sequence (more generally, we could use the whole of z1, . . . , zn+1 as the
training sequence).

The conformal transducer determined by a conformity measure A is defined
as

Q(z1, . . . , zn, (xn+1, y), τ) :=
1

n+ 1

∣∣{i = 1, . . . , n+ 1 | αy
i < αy

n+1

}∣∣
+

τ

n+ 1

∣∣{i = 1, . . . , n+ 1 | αy
i = αy

n+1

}∣∣ , (7)

where (z1, . . . , zn) ∈ (Rp+1)n is a training sequence, xn+1 ∈ Rp is a test object,
and for each y ∈ R the corresponding conformity score αy

i is defined by

αy
i := A(z1, . . . , zi−1, zi+1, . . . , zn, (xn+1, y), zi), i = 1, . . . , n,
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αy
n+1 := A(z1, . . . , zn, (xn+1, y)). (8)

A function is a conformal transducer if it is the conformal transducer determined
by some conformity measure. A conformal predictive system (CPS) is a function
which is both a conformal transducer and a randomized predictive system. A
conformal predictive distribution (CPD) is a function Qn defined by (2) for a
conformal predictive system Q.

Any conformal transducer Q and Borel set A ⊆ [0, 1] define the conformal
predictor

ΓA(z1, . . . , zn, xn+1, τ) := {y ∈ R | Q(z1, . . . , zn, (xn+1, y), τ) ∈ A} . (9)

The standard property of validity for conformal transducers is that the val-
ues (also called p-values) Q(z1, . . . , zn+1, τ) are distributed uniformly on [0, 1]
when z1, . . . , zn+1 are IID and τ is generated independently of z1, . . . , zn+1 from
the uniform probability distribution U on [0, 1] (see, e.g., Vovk et al. 2005,
Proposition 2.8). This property coincides with requirement R2 in the definition
of an RPS and implies that the coverage probability, i.e., the probability of
yn+1 ∈ ΓA(z1, . . . , zn, xn+1), for the conformal predictor (9) is U(A).

Remark 1. The usual interpretation of (7) is that it is a randomized p-value for
testing the null hypothesis of the observations being IID. In the case of CPDs,
the informal alternative hypothesis is that yn+1 = y is smaller than expected
under the IID model. Then (6) can be interpreted as a degree of conformity
of the observation (xn+1, yn+1) to the remaining observations. Notice the one-
sided nature of this notion of conformity: a label can only be strange (non-
conforming) if it is too small; large is never strange. This notion of conformity
is somewhat counterintuitive, and we use it only as a technical tool.

Defining properties of distribution functions

Next we discuss why Definition 1 (essentially taken from Shen et al. 2018) is
natural. The key elements of this definition are that (1) the distribution function
Q is monotonically increasing, and (2) its value is uniformly distributed. The
following two lemmas show that these are defining properties of distribution
functions of probability measures on the real line. All proofs are postponed to
Section 6.

First we consider the case of a continuous distribution function; the justifi-
cation for this case, given in the next lemma, is simpler.

Lemma 1. Suppose F is a continuous distribution function on R and Y is a
random variable distributed as F . If Q : R → R is a monotonically increasing
function such that the distribution of Q(Y ) is uniform on [0, 1], then Q = F .

In the general case we need randomization. Remember the definition of the
lexicographic order on R× [0, 1]: (y, τ) ≤ (y′, τ ′) is defined to mean that y < y′

or both y = y′ and τ ≤ τ ′.
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Lemma 2. Let P be a probability measure on R, F be its distribution function,
and Y be a random variable distributed as P . If Q : R× [0, 1] → R is a function
that is monotonically increasing (in the lexicographic order on its domain) and
such that the image (P ×U)Q−1 of the product P ×U , where U is the uniform
distribution on [0, 1], under the mapping Q is uniform on [0, 1], then, for all y
and τ ,

Q(y, τ) = (1− τ)F (y−) + τF (y). (10)

Equality (10) says that Q is essentially F ; in particular, Q(y, τ) = F (y) at
each point y of F ’s continuity. It is a known fact that if we define Q by (10)
for the distribution function F of a probability measure P , the distribution of
Q will be uniform when its domain R × [0, 1] is equipped with the probability
measure P × U : see the literature on randomized p-values, such as the review
Gurevich and Vovk (2017).

The previous two lemmas suggest that properties R1a and R2 in the def-
inition of RPSs are the important ones. However, property R1b is formally
independent of R1a and R2 in our case of the general IID model (rather than a
single probability measure on R): consider, e.g., a conformity measure A that
depends only on the objects xi but does not depend on their labels yi; e.g., the
left-hand side of (1) will be close to 1 for large n and highly conforming xn+1.

Simplest example: monotonic conformity measures

We start from a simple but very restrictive condition on a conformity mea-
sure making the corresponding conformal transducer satisfy R1a. A conformity
measure A is monotonic if A(z1, . . . , zn+1) is:

� monotonically increasing in yn+1,

yn+1 ≤ y′n+1 =⇒ A(z1, . . . , zn, (xn+1, yn+1)) ≤ A(z1, . . . , zn, (xn+1, y
′
n+1));

� monotonically decreasing in y1,

y1 ≤ y′1 =⇒ A((x1, y1), z2, . . . , zn, zn+1) ≥ A((x1, y
′
1), z2, . . . , zn, zn+1).

(Because of the requirement of invariance (5), being decreasing in y1 is
equivalent to being decreasing in yi for any i = 2, . . . , n.)

This condition implies that the corresponding conformal transducer (7) satisfies
R1a by Lemma 3 below.

An example of a monotonic conformity measure is (6), where ŷn+1 is pro-
duced by the K-nearest neighbours regression algorithm:

ŷn+1 :=
1

K

K∑
k=1

y(k)

is the average label of the K nearest neighbours of xn+1, where y(1), . . . , y(n) is
the sequence y1, . . . , yn sorted in the order of increasing distances between xi
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and xn+1 (we assume n ≥ K and in the case of ties replace each y(i) by the
average of yj over all j such that the distance between xj and xn+1 is equal to the
distance between xi and xn+1). This conformity measure satisfies, additionally,

lim
y→±∞

A(z1, . . . , zn, (xn+1, y)) = ±∞

and, therefore, the corresponding conformal transducer also satisfies R1b and
so is an RPS and a CPS.

Criterion of being a CPS

Unfortunately, many important conformity measures are not monotonic, and the
next lemma introduces a weaker sufficient condition for a conformal transducer
to be an RPS.

Lemma 3. The conformal transducer determined by a conformity measure
A satisfies condition R1a if, for each i ∈ {1, . . . , n}, each training sequence
(z1, . . . , zn) ∈ (Rp+1)n, and each test object xn+1 ∈ Rp, αy

n+1 − αy
i is a mono-

tonically increasing function of y ∈ R (in the notation of (8)).

Of course, we can fix i to, say, i := 1 in Lemma 3. We can strengthen the
conclusion of the lemma to the conformal transducer determined by A being an
RPS (and, therefore, a CPS) if, e.g.,

lim
y→±∞

(
αy
n+1 − αy

i

)
= ±∞.

3 Least Squares Prediction Machine

In this section we will introduce three versions of what we call the Least Squares
Prediction Machine (LSPM). They are analogous to the Ridge Regression Con-
fidence Machine (RRCM), as described in Vovk et al. (2005, Section 2.3) (and
called the IID predictor in Vovk et al. 2011), but produce (at least usually)
distribution functions rather than prediction intervals.

The ordinary LSPM is defined to be the conformal transducer determined
by the conformity measure

A(z1, . . . , zn+1) := yn+1 − Êyn+1 (11)

(cf. (6)), where yn+1 is the label in zn+1 and Êyn+1 is the prediction for yn+1

computed using Least Squares from xn+1 (the object in zn+1) and z1, . . . , zn+1

(including zn+1) as training sequence. The right-hand side of (11) is the ordinary
residual. However, two more kinds of residuals are common in statistics, and so
overall we will discuss three kinds of LSPM. The deleted LSPM is determined
by the conformity measure

A(z1, . . . , zn+1) := yn+1 − ŷn+1, (12)
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whose difference from (11) is that Êyn+1 is replaced by the prediction ŷn+1 for
yn+1 computed using Least Squares from xn+1 and z1, . . . , zn as training se-
quence (so that the training sequence does not include zn+1). The version that
will be most useful in this paper will be the “studentized LSPM”, which is
midway between ordinary and deleted LSPM; we will define it formally later.

Unfortunately, the ordinary and deleted LSPM are not RPS, because their
output Qn (see (2)) is not necessarily monotonically increasing in y (remember
that, for conformal transducers, Qn(y, τ) is monotonically increasing in τ auto-
matically). However, we will see that this can happen only in the presence of
high-leverage points.

Let X̄ stand for the (n+1)×p data matrix, whose ith row is the transpose x′
i

to the ith object (training object for i = 1, . . . , n and test object for i = n+1).
The hat matrix for the n+ 1 observations z1, . . . , zn+1 is

H̄ = X̄(X̄ ′X̄)−1X̄ ′. (13)

Our notation for the elements of this matrix will be h̄i,j , i standing for the row
and j for the column. For the diagonal elements h̄i,i we will use the shorthand h̄i.

The following proposition can be deduced from Lemma 3 and the explicit
form (analogous to Algorithm 1 below but using (22)) of the ordinary LSPM.
The details of the proofs for all results of this section will be spelled out in
Section 6.

Proposition 1. The function Qn output by the ordinary LSPM (see (2)) is
monotonically increasing in y provided h̄n+1 < 0.5.

The condition needed for Qn to be monotonically increasing, h̄n+1 < 0.5,
means that the test object xn+1 is not a very influential point. An overview
of high-leverage points is given by Chatterjee and Hadi (1988, Section 4.2.3.1),
where they start from Huber’s 1981 proposal to regard points xi with h̄i > 0.2
as influential.

The assumption h̄n+1 < 0.5 in Proposition 1 is essential:

Proposition 2. Proposition 1 ceases to be true if the constant 0.5 in it is
replaced by a larger constant.

The next two propositions show that for the deleted LSPM, determined by
(12), the situation is even worse than for the ordinary LSPM: we have to require
h̄i < 0.5 for all i = 1, . . . , n.

Proposition 3. The function Qn output by the deleted LSPM according to (2)
is monotonically increasing in y provided maxi=1,...,n h̄i < 0.5.

We have the following analogue of Proposition 2 for the deleted LSPM.

Proposition 4. Proposition 3 ceases to be true if the constant 0.5 in it is
replaced by a larger constant.
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The best choice, from the point of view of predictive distributions, seems to
be the studentized LSPM determined by the conformity measure

A(z1, . . . , zn+1) :=
yn+1 − Êyn+1√

1− h̄n+1

(14)

(intermediate between those for the ordinary and deleted LSPM: a standard
representation for the deleted residuals yi − ŷi, where ŷi is the prediction for yi
computed using z1, . . . , zi−1, zi+1, . . . , zn+1 as training sequence, is (yi−Êyi)/(1−
h̄i), i = 1, . . . , n + 1; we ignore a factor independent of i in the definition of
internally studentized residuals in, e.g., Seber and Lee 2003, Section 10.2).

An important advantage of studentized LSPM is that to get predictive dis-
tributions we do not need any assumptions of low leverage.

Proposition 5. The studentized LSPM is an RPS and, therefore, a CPS.

The studentized LSPM in an explicit form

We will give two explicit forms for the studentized LSPM (Algorithms 1 and 2);
the versions for the ordinary and deleted LSPM are similar (we will give an
explicit form only for the former, which is particularly intuitive). Predictive
distributions (2) will be represented in the form

Qn(y) := [Qn(y, 0), Qn(y, 1)]

(in the spirit of abstract randomized p-values of Geyer and Meeden 2005); the
function Qn maps each potential label y ∈ R to a closed interval of R. It
is clear that in the case of conformal transducers this interval-valued version
of Qn carries the same information as the original one: each original value
Qn(y, τ) can be restored as a convex mixture of the end-points of Qn(y); namely,
Qn(y, τ) = (1− τ)a+ τb if Qn(y) = [a, b].

Remember that the vector (Êy1, . . . , Êyn+1)
′ of ordinary Least Squares predic-

tions is the product of the hat matrix H̄ and the vector (y1, . . . , yn+1)
′ of labels.

For the studentized residuals (14), we can easily obtain

αy
n+1 − αy

i = Biy −Ai, i = 1, . . . , n,

in the notation of (8), where y is the label of the (n+ 1)st object xn+1 and

Bi :=
»

1− h̄n+1 +
h̄i,n+1√
1− h̄i

, (15)

Ai =

∑n
j=1 h̄j,n+1yj√
1− h̄n+1

+
yi −

∑n
j=1 h̄i,jyj√
1− h̄i

(16)

(see also (40) below). We will assume that all Bi are defined and positive; this
assumption will be discussed further at the end of this subsection.
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Algorithm 1 Least Squares Prediction Machine

Require: A training sequence (xi, yi) ∈ Rp × R, i = 1, . . . , n.
Require: A test object xn+1 ∈ Rp.
1: Set X̄ to the data matrix for the given n+ 1 objects.
2: Define the hat matrix H̄ by (13).
3: for i ∈ {1, 2, . . . , n} do
4: Define Ai and Bi by (16) and (15), respectively.
5: Set Ci := Ai/Bi.
6: end for
7: Sort C1, . . . , Cn in the increasing order obtaining C(1) ≤ · · · ≤ C(n).
8: Return the predictive distribution (17) for yn+1.

Set Ci := Ai/Bi for all i = 1, . . . , n. Sort all Ci in the increasing order
and let the resulting sequence be C(1) ≤ · · · ≤ C(n). Set C(0) := −∞ and
C(n+1) := ∞. The predictive distribution is:

Qn(y) :=

®
[ i
n+1 ,

i+1
n+1 ] if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}

[ i
′−1
n+1 ,

i′′+1
n+1 ] if y = C(i) for i ∈ {1, . . . , n},

(17)

where i′ := min{j | C(j) = C(i)} and i′′ := max{j | C(j) = C(i)}. We can

see that the thickness of this CPD is 1
n+1 with the exception size equal to the

number of distinct Ci, at most n.
The overall algorithm is summarized as Algorithm 1. Remember that the

data matrix X̄ has x′
i, i = 1, . . . , n+ 1, as its ith row; its size is (n+ 1)× p.

Finally, let us discuss the condition that all Bi are defined and positive,
i = 1, . . . , n. By Chatterjee and Hadi (1988, Property 2.6(b)), h̄n+1 = 1 implies
h̄i,n+1 = 0 for i = 1, . . . , n; therefore, the condition is equivalent to h̄i < 1 for
all i = 1, . . . , n+1. By Mohammadi (2016, Lemma 2.1(iii)), this means that the
rank of the extended data matrix X̄ is p and it remains p after removal of any
one of its n+ 1 rows. If this condition is not satisfied, we define Qn(y) := [0, 1]
for all y. This ensures that the studentized LSPM is a CPS.

The batch version of the studentized LSPM

There is a much more efficient implementation of the LSPM in situations where
we have a large test sequence of objects xn+1, . . . , xn+m instead of just one test
object xn+1. In this case we can precompute the hat matrix for the training
objects x1, . . . , xn, and then, when processing each test object xn+j , use the
standard updating formulas based on the Sherman–Morrison–Woodbury the-
orem: see, e.g., Chatterjee and Hadi (1988, p. 23, (2.18)–(2.18c)). For the
reader’s convenience we will spell out the formulas. Let X be the n × p data
matrix for the first n observations: its ith row is x′

i, i = 1, . . . , n. Set

gi := x′
i(X

′X)−1xn+1, i = 1, . . . , n+ 1. (18)

10



Algorithm 2 Least Squares Prediction Machine (batch version)

Require: A training sequence (xi, yi) ∈ Rp × R, i = 1, . . . , n.
Require: A test sequence xn+j ∈ Rp, j = 1, . . . ,m.
1: Set X to the data matrix for the n training objects.
2: Set H = (hi,j) to the hat matrix (19).
3: for j ∈ {1, 2, . . . ,m} do
4: Set xn+1 := xn+j .
5: Define an (n+ 1)× (n+ 1) matrix H̄ = (h̄i,j) by (20) and (21).
6: for i ∈ {1, 2, . . . , n} do
7: Define Ai and Bi by (16) and (15), respectively.
8: Set Ci := Ai/Bi.
9: end for

10: Sort C1, . . . , Cn in the increasing order obtaining C(1) ≤ · · · ≤ C(n).
11: Return the predictive distribution (17) for the label of xn+j .
12: end for

Finally, let H be the n× n hat matrix

H := X(X ′X)−1X ′ (19)

for the first n objects; its entries will be denoted hi,j , with hi,i sometimes
abbreviated to hi. The full hat matrix H̄ is larger than H, with the extra
entries

h̄i,n+1 = h̄n+1,i =
gi

1 + gn+1
, i = 1, . . . , n+ 1. (20)

The other entries of H̄ are

h̄i,j = hi,j −
gigj

1 + gn+1
, i, j = 1, . . . , n. (21)

The overall algorithm is summarized as Algorithm 2. The two steps before
the outer for loop are preprocessing; they do not depend on the test sequence.

The ordinary LSPM

A straightforward calculation shows that the ordinary LSPM has a particularly
efficient and intuitive representation (Burnaev and Vovk, 2014, Appendix A):

Ci =
Ai

Bi
= ŷn+1 + (yi − ŷi)

1 + gn+1

1 + gi
, (22)

where ŷn+1 and ŷi are the Least Squares predictions for yn+1 and yi, respec-
tively, computed from the test objects xn+1 and xi, respectively, and the ob-
servations z1, . . . , zn as the training sequence. The representation (22) is stated
and proved in Section 6 as Lemma 4. The predictive distribution is defined by
(17). The fraction 1+gn+1

1+gi
in (22) is typically and asymptotically (at least under

the assumptions A1–A4 stated in the next section) close to 1, and can usually
be ignored. The two other versions of the LSPM also typically have

Ci ≈ ŷn+1 + (yi − ŷi). (23)

11



4 A property of validity of the LSPM in the
online mode

In the previous section (cf. Algorithm 1) we defined a procedure producing a
“fuzzy” distribution function Qn given a training sequence zi = (xi, yi), i =
1, . . . , n, and a test object xn+1. In this and following sections we will use both
notation Qn(y) (for an interval) and Qn(y, τ) (for a point inside that interval,
as above). Remember that U is the uniform distribution on [0, 1].

Prediction in the online mode proceeds as follows:

Protocol 1. Online mode of prediction
Nature generates an observation z1 = (x1, y1)

from a probability distribution P ;
for n = 1, 2, . . . do

Nature independently generates a new observation
zn+1 = (xn+1, yn+1) from P ;

Forecaster announces Qn, a predictive distribution
based on (z1, . . . , zn) and xn+1;

set pn := Qn(yn+1, τn), where τn ∼ U independently
end for

Of course, Forecaster does not know P and yn+1 when computing Qn.
In the online mode we can strengthen condition R2 as follows:

Theorem 1 (Vovk et al. 2005, Theorem 8.1). In the online mode of predic-
tion (in which (zi, τi) ∼ P × U are IID), the sequence (p1, p2, . . .) is IID and
(p1, p2, . . .) ∼ U∞, provided that Forecaster uses the studentized LSPM (or any
other conformal transducer).

The property of validity asserted in Theorem 1 is marginal, in that we do not
assert that the distribution of pn is uniform conditionally on xn+1. Conditional
validity is attained by the LSPM only asymptotically and under additional
assumptions, as we will see in the next section.

5 Asymptotic efficiency

In this section we obtain some basic results about the LSPM’s efficiency. The
LSPM has a property of validity under the general IID model, but a natural
question is how much we should pay for it in terms of efficiency in situations
where narrow parametric or even Bayesian assumptions are also satisfied. This
question was asked independently by Evgeny Burnaev (in September 2013) and
Larry Wasserman. It has an analogue in nonparametric hypothesis testing:
e.g., a major impetus for the widespread use of the Wilcoxon rank-sum test
was Pitman’s discovery in 1949 that even in the situation where the Gaussian
assumptions of Student’s t-test are satisfied the efficiency (“Pitman’s efficiency”)
of the Wilcoxon test is still 0.95.

12



In fact the assumptions that we use in our theoretical study of efficiency
are not comparable with the general IID model used so far: we will add strong
parametric assumptions on the way labels yi are generated given the correspond-
ing objects xi but will remove the assumption that the objects are generated
randomly in the IID fashion; in this section x1, x2, . . . are fixed vectors. (The
reason being that the two main results of this section, Theorems 2 and 3, do
not require the assumption that the objects are random and IID.) Suppose that,
given the objects x1, x2, . . ., the labels y1, y2, . . . are generated by the rule

yi = w′xi + ξi, (24)

where w is a vector in Rp and ξi are independent random variables distributed
as N(0, σ2) (the Gaussian distribution being parameterized by its mean and
variance). There are two parameters: vector w and positive number σ. We
assume an infinite sequence of observations (x1, y1), (x2, y2), . . . but take only
the first n of them as our training sequence and let n → ∞. These are all the
assumptions used in our efficiency results:

A1 The sequence x1, x2, . . . is bounded: supi ∥xi∥ < ∞.

A2 The first component of each vector xi is 1.

A3 The empirical second-moment matrix has its smallest eigenvalue eventually
bounded away from 0:

lim inf
n→∞

λmin

(
1

n

n∑
i=1

xix
′
i

)
> 0,

where λmin stands for the smallest eigenvalue.

A4 The labels y1, y2, . . . are generated according to (24): yi = w′xi+ξi, where ξi
are independent Gaussian noise random variables distributed as N(0, σ2).

Alongside the three versions of the LSPM, we will consider three “oracles”
(at first concentrating on the first two). Intuitively, all three oracles know that
the data is generated from the model (24). Oracle I knows neither w nor σ (and
has to estimate them from the data or somehow manage without them). Oracle
II does not know w but knows σ. Finally, Oracle III knows both w and σ.

Formally, proper Oracle I outputs the standard predictive distribution for
the label yn+1 of the test object xn+1 given the training sequence of the first n
observations and xn+1, namely it predicts with

ŷn+1 +
√

1 + gn+1σ̂ntn−p, (25)

where gn+1 is defined in (18),

ŷn+1 := x′
n+1(X

′X)−1X ′Y,

σ̂n :=

Ã
1

n− p

n∑
i=1

(yi − ŷi)2, ŷi := x′
i(X

′X)−1X ′Y,

13



X is the data matrix for the training sequence (the n× p matrix whose ith row
is x′

i, i = 1, . . . , n), Y is the vector (y1, . . . , yn)
′ of the training labels, and tn−p

is Student’s t-distribution with n − p degrees of freedom; see, e.g., Seber and
Lee (2003, Section 5.3.1) or Wang et al. (2012, Example 3.3). (By condition
A3, (X ′X)−1 exists from some n on.) The version that is more popular in the
literature on empirical processes for residuals is simplified Oracle I outputting

N
(
ŷn+1, σ̂

2
n

)
. (26)

The difference between the two versions, however, is asymptotically negligible
(Pinelis, 2015), and the results stated below will be applicable to both versions.

Proper Oracle II outputs the predictive distribution

N
(
ŷn+1, (1 + gn+1)σ

2
)
. (27)

Correspondingly, simplified Oracle II outputs the predictive distribution

N
(
ŷn+1, σ

2
)
; (28)

the difference between the two versions of Oracle II is again asymptotically
negligible under our assumptions. For future reference, Oracle III outputs the
predictive distribution

N
(
w′xn+1, σ

2
)
.

Our notation is Qn for the conformal predictive distribution (2), as before,
QI

n for simplified or proper Oracle I’s predictive distribution, (26) or (25) (The-
orem 2 will hold for both), and QII

n for simplified or proper Oracle II’s predictive
distribution, (28) or (27) (Theorem 3 will hold for both). Theorems 2 and 3 are
applicable to all three versions of the LSPM.

Theorem 2. The random functions Gn : R → R defined by

Gn(t) :=
√
n
(
Qn(ŷn+1 + σ̂nt, τ)−QI

n(ŷn+1 + σ̂nt)
)

weakly converge to a Gaussian process Z with mean zero and covariance function

cov(Z(s), Z(t)) = Φ(s) (1− Φ(t))− ϕ(s)ϕ(t)− 1

2
stϕ(s)ϕ(t), s ≤ t.

Theorem 3. The random functions Gn : R → R defined by

Gn(t) :=
√
n
(
Qn(ŷn+1 + σt, τ)−QII

n (ŷn+1 + σt)
)

weakly converge to a Gaussian process Z with mean zero and covariance function

cov(Z(s), Z(t)) = Φ(s) (1− Φ(t))− ϕ(s)ϕ(t), s ≤ t. (29)

In Theorems 2 and 3, we have τ ∼ U ; alternatively, they will remain true if we
fix τ to any value in [0, 1]. For simplified oracles, we have QI

n(ŷn+1+σ̂nt) = Φ(t)
in Theorem 2 and QII

n (ŷn+1 + σt) = Φ(t) in Theorem 3. Our proofs of these
theorems (given in Section 6) are based on the representation (22) and the
results of Mugantseva (1977) (see also Chen 1991, Chapter 2).

Applying Theorems 2 and 3 to a fixed argument t, we obtain (dropping τ
altogether):

14
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Figure 1: The asymptotic variances for the Dempster–Hill (DH) procedure as
compared with the truth (Oracle III, red) and for the LSPM and DH proce-
dure as compared with the oracular procedures for known σ (Oracle II, blue)
and unknown σ (Oracle I, black); in black and white, red is highest, blue is
intermediate, and black is lowest

Corollary 1. For a fixed t ∈ R,

√
n
(
Qn(ŷn+1 + σ̂nt)−QI

n(ŷn+1 + σ̂nt)
)

⇒ N

Å
0,Φ(t)(1− Φ(t))− ϕ(t)2 − 1

2
t2ϕ(t)2

ã
and

√
n
(
Qn(ŷn+1 + σt)−QII

n (ŷn+1 + σt)
)
⇒ N

(
0,Φ(t)(1− Φ(t))− ϕ(t)2

)
.

Figure 1 presents plots for the asymptotic variances, given in Corollary 1,
for the two oracular predictive distributions: black for Oracle I (Φ(t)(1−Φ(t))−
ϕ(t)2 − 1

2 t
2ϕ(t)2 vs t) and blue for Oracle II (Φ(t)(1 − Φ(t)) − ϕ(t)2 vs t); the

red plot will be discussed later in this section. The two asymptotic variances
coincide at t = 0, where they attain their maximum of between 0.0908 and
0.0909.

We can see that under the Gaussian model (24) complemented by other
natural assumptions, the LSPM is asymptotically close to the oracular predictive
distributions for Oracles I and II, and therefore is approximately conditionally
valid and efficient (i.e., valid and efficient given x1, x2, . . .). On the other hand,
Theorem 1 guarantees the marginal validity of the LSPM under the general IID
model, regardless of whether (24) holds.
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Comparison with the Dempster–Hill procedure

In this subsection we discuss a classical procedure that was most clearly articu-
lated by Dempster (1963, p. 110) and Hill (1968, 1988); therefore, in this paper
we refer to it as the Dempster–Hill procedure. Both Dempster and Hill trace
their ideas to Fisher’s (1939, 1948) nonparametric version of his fiducial method,
but Fisher was interested in confidence distributions for quantiles rather than
predictive distributions. Hill (1988) also referred to his procedure as Bayesian
nonparametric predictive inference, which was abbreviated to nonparametric
predictive inference (NPI) by Frank Coolen (Augustin and Coolen, 2004). We
are not using the last term since it seems that all of this paper (and the whole
area of conformal prediction) falls under the rubric of “nonparametric predictive
inference”. An important predecessor of Dempster and Hill was Jeffreys (1932),
who postulated what Hill later denoted as A(2) (see Lane 1980 and Seidenfeld
1995 for discussions of Jeffreys’s paper and Fisher’s reaction).

The Dempster–Hill procedure is the conformal predictive system determined
by the conformity measure

A(z1, . . . , zn+1) = A(y1, . . . , yn+1) = yn+1; (30)

it is used when the objects xi are absent. (Both Dempster and Hill consider
this case.) It can be regarded as the special case of the LSPM for the number
of attributes p = 0; alternatively, we can take p = 1 but assume that all objects
are xi = 0. The predictions ŷ are always 0 and the hat matrices are H̄ = 0 and
H = 0 (although the expressions (13) and (19) are not formally applicable),
which means that (11), (12), and (14) all reduce to (30). It is easy to see that
the predictive distribution becomes, in the absence of ties (Dempster’s and Hill’s
usual assumption),

Qn(y) :=

®
[ i
n+1 ,

i+1
n+1 ] if y ∈ (y(i), y(i+1)) for i ∈ {0, 1, . . . , n}

[ i−1
n+1 ,

i+1
n+1 ] if y = y(i) for i ∈ {1, . . . , n}

(31)

(cf. (17)), where y(1) ≤ · · · ≤ y(n) are the yi sorted in the increasing order, y(0) :=
−∞, and y(n+1) := ∞. This is essentially Hill’s assumption A(n) (which he also
denoted An); in his words: “An asserts that conditional upon the observations
X1, . . . , Xn, the next observation Xn+1 is equally likely to fall in any of the
open intervals between successive order statistics of the given sample” (Hill,
1968, Section 1). The set of all continuous distribution functions F compatible
with Hill’s A(n) coincides with the set of all continuous distribution functions
F satisfying F (y) ∈ Qn(y) for all y ∈ R, where Qn is defined by (31).

Notice that the LSPM, as presented in (23), is a very natural adaptation of
A(n) to the Least Squares regression.

Since (31) is a conformal transducer (provided a point from an interval in
(31) is chosen randomly from the uniform distribution on that interval), we have
the same guarantees of validity as those given above: the distribution of (31) is
uniform over the interval [0, 1].

16



As for efficiency, it is interesting that, in the most standard case of IID
Gaussian observations, our predictive distributions for linear regression are as
precise as the Dempster–Hill ones asymptotically when compared with Oracles I
and II. Let us apply the Dempster–Hill procedure to the location/scale model
yi = w + ξi, i = 1, 2, . . ., where ξi ∼ N(0, σ2) are independent. As in the case
of the LSPM, we can compare the Dempster–Hill procedure with three oracles
(we consider only simplified versions): Oracle I knows neither w nor σ, Oracle
II knows σ, and Oracle III knows both w and σ.

It is interesting that Theorems 2 and 3 (and therefore the blue and black
plots in Figure 1) are applicable to both the LSPM and Dempster–Hill predictive
distributions. (The fact that the analogous asymptotic variances for standard
linear regression are as good as those for the location/scale model was empha-
sized in the pioneering paper by Pierce and Kopecky 1979.) The situation with
Oracle III is different. Donsker’s (1952) classical result implies the following
simplification of Theorems 2 and 3, where QIII stands for Oracle III’s predictive
distribution (independent of n).

Theorem 4. In the case of the Dempster–Hill procedure, the random function
Gn : R → R defined by

Gn(t) :=
√
n
(
Qn(w + σt, τ)−QIII(w + σt)

)
=

√
n (Qn(w + σt, τ)− Φ(t))

(32)
weakly converges to a Brownian bridge, i.e., a Gaussian process Z with mean
zero and covariance function

cov(Z(s), Z(t)) = Φ(s) (1− Φ(t)) , s ≤ t.

The variance Φ(t)(1−Φ(t)) of the Brownian bridge is shown as the red line
in Figure 1. However, the analogue of the process (32) does not converge in
general for the LSPM (under this section’s assumption of fixed objects).

6 Proofs, calculations, and additional observa-
tions

In this section we give all proofs and calculations for the results of the previous
sections and provide some additional comments.

Proofs for Section 2

Here we prove Lemmas 1–3.

Proof of Lemma 1

Suppose there is y ∈ R such that Q(y) ̸= F (y). Fix such a y. The probability
that Q(Y ) ≤ Q(y) is, on the one hand, Q(y) and, on the other hand, F (y′),
where

y′ := sup{y′′ | Q(y′′) = Q(y)}.
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(The first statement follows from the distribution of Y being uniform and the
second from the definition of F in conjunction with its continuity.) Since Q(y) ̸=
F (y), we have y′ > y, and we know that Q(y) = Q(y′−) = F (y′) > F (y). We
can see that Qmaps the whole interval [y, y′) of positive probability F (y′)−F (y)
to one point, which contradicts its distribution being uniform.

Proof of Lemma 2

First we prove that Q(y, 1) = F (y) for all y ∈ R. Fix a y ∈ R such that
Q(y, 1) ̸= F (y), assuming it exists. Set

y′ := sup{y′′ | Q(y′′, 1) = Q(y, 1)}. (33)

Since Q(y, 1) ̸= F (y) and, for (Y, τ) ∼ P × U ,

Q(y, 1) = P(Q(Y, τ) ≤ Q(y, 1)) ≥ P(Q(Y, 1) ≤ Q(y, 1))

≥ P((Y, 1) ≤ (y, 1)) = P(Y ≤ y) = F (y),

we have Q(y, 1) > F (y). Next we consider two cases:

� if the supremum in (33) is attained,

F (y) < Q(y, 1) = P(Q(Y, 1) ≤ Q(y, 1)) = P((Y, 1) ≤ (y′, 1)) = F (y′),

and so Q maps the lexicographic interval ((y, 1), (y′, 1)] of positive proba-
bility F (y′)− F (y) into one point;

� if the supremum in (33) is not attained,

F (y) < Q(y, 1) = P(Q(Y, 1) ≤ Q(y, 1)) = P((Y, 1) < (y′, 1)) = F (y′−),

and so Q maps the lexicographic interval ((y, 1), (y′, 0)) of positive prob-
ability F (y′−)− F (y) into one point.

In both cases we get a contradiction with the distribution of Q being uniform,
which completes the proof that Q(y, 1) = F (y) for all y ∈ R.

In the same way we prove that Q(y, 0) = F (y−) for all y ∈ R.
Now (10) holds trivially when F is continuous at y. If it is not,

Q−1((F (y−), F (y)) will only contain points (y, τ) for various τ , and so (10) is
the only way to ensure that the distribution of Q is uniform.

Proof of Lemma 3

Let us split all numbers i ∈ {1, . . . , n + 1} into three classes: i of class I are
those satisfying αy

i > αy
n+1, i of class II are those satisfying αy

i = αy
n+1, and i

of class III are those satisfying αy
i < αy

n+1. Each of those numbers is assigned a
weight : 0 for i of class I, τ/(n+1) for i of class II, and 1/(n+1) for i of class III;
notice that the weights are larger for higher-numbered classes. According to (7),
Qn(y, τ) is the sum of the weights of all i ∈ {1, . . . , n+1}. As y increases, each
individual weight can only increase (as i can move only to a higher-numbered
class), and so the total weight Qn(y, τ) can also only increase.
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Comments and proofs for Section 3

After a brief discussion of Ridge Regression Prediction Machines (analogous
to Ridge Regression Confidence Machines, mentioned at the beginning of Sec-
tion 3), we prove Propositions 1–5 and find the explicit forms for the studentized,
ordinary, and deleted LSPM.

Ridge Regression Prediction Machines

We can generalize LSPM to the Ridge Regression Prediction Machine (RRPM)
by replacing the Least Squares predictions in (11), (12), and (14) by Ridge
Regression predictions (see Vovk et al. January 2019 (first posted October 2017
for details). In this paper we are interested in the case p ≪ n, and so Least
Squares often provide a reasonable result as compared with Ridge Regression.
When we move on to the kernel case (and Kernel Ridge Regression), the Least
Squares method ceases to be competitive. Vovk et al. (January 2019 (first posted
October 2017) extend some results of this paper to the kernel case replacing the
LSPM by the RRPM.

Remark 2. The early versions of the Ridge Regression Confidence Machines
used |yn+1 − Êyn+1| in place of the right-hand side of (11) (see, e.g., Vovk et al.
2005, Section 2.3). For the first time the operation |· · · | of taking the absolute
value was dropped in Burnaev and Vovk (2014) to facilitate theoretical analysis.

Proof of Proposition 1

According to Lemma 3, Qn(y, τ) will be monotonically increasing in y if αy
n+1−

αy
i is a monotonically increasing function of y. We will use the notation ei :=

yi− ŷi (suppressing the dependence on y) for the ith residual, i = 1, . . . , n+1, in
the data sequence z1, . . . , zn, (xn+1, y); yn+1 is understood to be y. In terms of
the hat matrix H̄ (which does not depend on the labels), the difference en+1−ei
can be written as

αy
n+1 − αy

i = en+1 − ei

= (yn+1 − ŷn+1)− (yi − ŷi)

= y − ŷn+1 + ŷi + c

= y − (h̄n+1,1y1 + · · ·+ h̄n+1,nyn + h̄n+1y)

+ (h̄i,1y1 + · · ·+ h̄i,nyn + h̄i,n+1y) + c

= (1− h̄n+1 + h̄i,n+1)y + c, (34)

where c stands for a constant (in the sense of not depending on y), and different
entries of c may stand for different constants. We can see that Qn will be a
nontrivial monotonically increasing function of y whenever

1− h̄n+1 + h̄i,n+1 > 0 (35)
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for all i = 1, . . . , n. Since h̄i,n+1 ∈ [−0.5, 0.5] (see Chatterjee and Hadi 1988,
Property 2.5(b) on p. 17), we can see that it indeed suffices to assume h̄n+1 <
0.5.

Proof of Proposition 2

We are required to show that our c = 0.5 is the largest c for which the assumption
h̄n+1 < c is still sufficient for Qn(y, τ) to be a monotonically increasing function
of y. For ϵ ∈ (0, 1), consider the data set

X̄ =

Å
−1 + ϵ

1

ã
(36)

(so that n = 1; we have two observations: one training observation and one test
observation). The hat matrix is

H̄ =
1

2− 2ϵ+ ϵ2

Å
(1− ϵ)2 −1 + ϵ
−1 + ϵ 1

ã
.

The coefficient in front of y in the last line of (34) (i.e., the left-hand side of
(35)) now becomes

1− 1

2− 2ϵ+ ϵ2
+

−1 + ϵ

2− 2ϵ+ ϵ2
=

ϵ2 − ϵ

2− 2ϵ+ ϵ2
< 0.

Therefore, Qn(·, τ) is monotonically decreasing and not monotonically increas-
ing. On the other hand,

h̄n+1 = h̄2 =
1

2− 2ϵ+ ϵ2

can be made as close to 0.5 as we wish by making ϵ sufficiently small.

Proof of Proposition 3

Let e(i) be the deleted residual : e(i) := yi − ŷ(i), where ŷ(i) is computed using
Least Squares from the data set z1, . . . , zi−1, zi+1, . . . , zn+1 (so that zi is deleted
from z1, . . . , zn+1, where we set temporarily zn+1 := (xn, y)). It is well known
that

e(i) =
ei

1− h̄i
,

where ei is the ordinary residual, as used in the proof of Proposition 1 (for a
proof, see, e.g., Montgomery et al. 2012, Appendix C.7). Let us check when
the difference e(n+1) − e(i) is a monotonically increasing function of y = yn+1.
Analogously to (34), we have, for any i = 1, . . . , n:

e(n+1) − e(i) =
en+1

1− h̄n+1
− ei

1− h̄i

=
yn+1 − ŷn+1

1− h̄n+1
− yi − ŷi

1− h̄i
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=
y − h̄n+1y

1− h̄n+1
− yi − h̄i,n+1y

1− h̄i
+ c

= y − yi − h̄i,n+1y

1− h̄i
+ c

= y
1− h̄i + h̄i,n+1

1− h̄i
+ c. (37)

Therefore, it suffices to require

1− h̄i + h̄i,n+1 > 0, (38)

which is the same condition as for the ordinary LSPM (see (35)) but with i and
n+ 1 swapped. Therefore, it suffices to assume h̄i < 0.5.

Proof of Proposition 4

The statement of the proposition is obvious from the proofs of Propositions 2
and 3: motivated by the conditions (35) and (38) being obtainable from each
other by swapping i and n + 1, we can apply the argument in the proof of
Proposition 2 to the data set

X̄ =

Å
1

−1 + ϵ

ã
(which is (36) with its rows swapped).

Proof of Proposition 5

Similarly to (34) and (37), we obtain:

αy
n+1 − αy

i =
en+1√
1− h̄n+1

− ei√
1− h̄i

=
yn+1 − ŷn+1√

1− h̄n+1

− yi − ŷi√
1− h̄i

=
y − h̄n+1y√
1− h̄n+1

− yi − h̄i,n+1y√
1− h̄i

+ c

=
»
1− h̄n+1y +

h̄i,n+1√
1− h̄i

y + c. (39)

Therefore, we need to check the inequality»
1− h̄n+1 +

h̄i,n+1√
1− h̄i

≥ 0.

This inequality can be rewritten as

h̄i,n+1 ≥ −
»

(1− h̄n+1)(1− h̄i)

and follows from Chatterjee and Hadi (1988), Property 2.6(b) on p. 19.
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Computations for the studentized LSPM

Now we need the chain (39) with a more careful treatment of the unspecified
constants c:

αn+1 − αi =
en+1√
1− h̄n+1

− ei√
1− h̄i

=
yn+1 − ŷn+1√

1− h̄n+1

− yi − ŷi√
1− h̄i

=
y −

∑n
j=1 h̄j,n+1yj − h̄n+1y√

1− h̄n+1

−
yi −

∑n
j=1 h̄i,jyj − h̄i,n+1y√

1− h̄i

=

Ç»
1− h̄n+1 +

h̄i,n+1√
1− h̄i

å
y

−
Ç∑n

j=1 h̄j,n+1yj√
1− h̄n+1

+
yi −

∑n
j=1 h̄i,jyj√
1− h̄i

å
= Biy −Ai, (40)

where the last equality is just the definition of Bi and Ai, also given by (15)
and (16) above.

The ordinary and deleted LSPM

Here we will do the analogues of the calculation (40) for the ordinary and deleted
LSPM. For the ordinary LSPM we obtain

αn+1 − αi = en+1 − ei

= (yn+1 − ŷn+1)− (yi − ŷi)

=

Ñ
y −

n∑
j=1

h̄j,n+1yj − h̄n+1y

é
−

Ñ
yi −

n∑
j=1

h̄i,jyj − h̄i,n+1y

é
=
(
1− h̄n+1 + h̄i,n+1

)
y

−

Ñ
n∑

j=1

h̄j,n+1yj + yi −
n∑

j=1

h̄i,jyj

é
= Biy −Ai,

with the notation

Bi := 1− h̄n+1 + h̄i,n+1, (41)

Ai =

n∑
j=1

h̄j,n+1yj + yi −
n∑

j=1

h̄i,jyj . (42)

For the deleted LSPM the calculation (40) becomes:

αn+1 − αi =
en+1

1− h̄n+1
− ei

1− h̄i
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=
yn+1 − ŷn+1

1− h̄n+1
− yi − ŷi

1− h̄i

=
y −

∑n
j=1 h̄j,n+1yj − h̄n+1y

1− h̄n+1
−

yi −
∑n

j=1 h̄i,jyj − h̄i,n+1y

1− h̄i

=

Å
1 +

h̄i,n+1

1− h̄i

ã
y

−
Ç∑n

j=1 h̄j,n+1yj

1− h̄n+1
+

yi −
∑n

j=1 h̄i,jyj

1− h̄i

å
= Biy −Ai,

with the notation

Bi := 1 +
h̄i,n+1

1− h̄i
,

Ai =

∑n
j=1 h̄j,n+1yj

1− h̄n+1
+

yi −
∑n

j=1 h̄i,jyj

1− h̄i
.

Comments and proofs for Section 5

There are different notions of weak convergence of empirical processes used in
literature, but in this paper (in particular, Theorems 2 and 3) we use the
old-fashioned one due to Skorokhod: see, e.g., Billingsley (1999, except for
Section 15). We will regard empirical distribution functions and empirical pro-
cesses to be elements of a function space which we will denote D: its elements
are càdlàg (i.e., right-continuous with left limits) functions f : R → R, and the
distance between f, g ∈ D will be defined to be the Skorokhod distance (either d
or d◦ in the notation of Billingsley 1999, Theorem 12.1) between the functions
t ∈ [0, 1] 7→ f(Φ−1(t)) and t ∈ [0, 1] 7→ g(Φ−1(t)) in D[0, 1]. (Here Φ is the
standard Gaussian distribution function; we could have used any other function
on the real line that is strictly monotonically increasing from 0 to 1.)

Proofs of Theorems 2 and 3 for the ordinary LSPM

We will start our proof from the ordinary LSPM, in which case the predictive
distribution is particularly simple.

Lemma 4 (Burnaev and Vovk 2014). In the case of the ordinary LSPM, we
have (22).

Proof. Remember that, in our notation, X is the data matrix based on the first
n observations, X̄ is the data matrix based on the first n + 1 observations, H
is the hat matrix X(X ′X)−1X ′ based on the first n observations, and H̄ is the
hat matrix X̄(X̄ ′X̄)−1X ′ based on the first n + 1 observations; the elements
of H are denoted as hi,j and the elements of H̄ as h̄i,j , except that for the
diagonal elements we do not repeat the index. Besides, we let Y ∈ Rn stand for
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the vector of the training labels (y1, . . . , yn)
′. To compute Ci we will use the

formulas (41)–(42) and (20)–(21):

Bi = 1− h̄n+1 + h̄i,n+1

= 1−
x′
n+1(X

′X)−1xn+1

1 + x′
n+1(X

′X)−1xn+1
+

x′
i(X

′X)−1xn+1

1 + x′
n+1(X

′X)−1xn+1

=
1 + x′

i(X
′X)−1xn+1

1 + x′
n+1(X

′X)−1xn+1
.

and, letting ŷ stand for the predictions computed from the first n observations,

Ai = yi −
n∑

j=1

h̄i,jyj +

n∑
j=1

h̄j,n+1yj

= yi −
n∑

j=1

hi,jyj +

n∑
j=1

x′
i(X

′X)−1xn+1x
′
n+1(X

′X)−1xj

1 + x′
n+1(X

′X)−1xn+1
yj

+

n∑
j=1

x′
j(X

′X)−1xn+1

1 + x′
n+1(X

′X)−1xn+1
yj

= yi − ŷi +
x′
i(X

′X)−1xn+1x
′
n+1(X

′X)−1X ′Y

1 + x′
n+1(X

′X)−1xn+1
+

Y ′X(X ′X)−1xn+1

1 + x′
n+1(X

′X)−1xn+1

= yi − ŷi +
x′
i(X

′X)−1xn+1ŷn+1

1 + x′
n+1(X

′X)−1xn+1
+

ŷn+1

1 + x′
n+1(X

′X)−1xn+1

= yi − ŷi +
1 + x′

i(X
′X)−1xn+1

1 + x′
n+1(X

′X)−1xn+1
ŷn+1.

This gives

Ci = Ai/Bi = (yi − ŷi)
1 + x′

n+1(X
′X)−1xn+1

1 + x′
i(X

′X)−1xn+1
+ ŷn+1,

i.e., (22).

Now Theorems 2 and 3 will follow from Mugantseva (1977) and Chen (1991).
Mugantseva only treats simple linear regression, and in general we deduce The-
orem 2 from Chen (1991, Theorem 2.4.3) and deduce Theorem 3 from Chen’s
Theorems 2.4.3 and 2.3.2. However, to make those results applicable we need
to show that the fraction 1+gn+1

1+gi
in (22) can be ignored; the following lemma

shows that both gn+1 and gi are sufficiently close to 1.

Lemma 5. Under our conditions A1–A4,

max
i=1,...,n+1

|gi| = O(n−1) = o(n−1/2).

Proof. We have, for all allowed sequences x1, x2, . . .,

max
i=1,...,n+1

|gi| ≤
∥xn+1∥maxi=1,...,n+1 ∥xi∥

λmin(X ′X)
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<
∥xn+1∥maxi=1,...,n+1 ∥xi∥

nϵ
= O(n−1),

with the inequality holding for some ϵ > 0 from some n on.

We will spell out the details of the proof only for Theorem 3. Since Qn is
concentrated at the points C1, . . . , Cn, its transformation t 7→ Qn(ŷn+1 + σt) is
concentrated at

ti =
Ci − ŷn+1

σ
=

yi − ŷi
σ

1 + gn+1

1 + gi
(43)

(by (22)). If we replace (43) by

t̄i =
yi − ŷi

σ

the desired result reduces to Mugantseva’s (as presented by Chen 1991), so we
need to check that this replacement is valid. We will use the fact that, by
Lemma 5,

1 + gn+1

1 + gi
= 1 + o(n−1/2)

as n → ∞ uniformly in i = 1, . . . , n. Let Fn be the empirical distribution
function determined by the random points t1, . . . , tn and F̄n be the empirical
distribution function determined by the random points t̄1, . . . , t̄n. Let

Gn(t) := n1/2(Fn(t)− Φ(t))

Ḡn(t) := n1/2(F̄n(t)− Φ(t))

be the corresponding empirical processes. We know that Ḡn weakly converge to
the zero-mean Gaussian process Z with the covariance function (29). Our goal
is to prove that the same is true about Gn.

The idea is to use Prokhorov’s theorem, in the form of Theorem 13.1 in
Billingsley (1999), first proving that the finite-dimensional distributions of Gn

converge to those of Z and then that the sequence Gn is tight. The functional
space D(−∞,∞) is defined and studied in Billingsley (1999, p. 191); we can
use it in place of D if we consider, without loss of generality, the domains of Gn

and Ḡn to be bounded. Let πt∗1 ,...,t
∗
k
be the projection of D(−∞,∞) onto Rk:

πt∗1 ,...,t
∗
k
(x) := (x(t∗1), . . . , x(t

∗
k)).

Lemma 6. The finite-dimensional distributions of Gn weakly converge to Z:
πt∗1 ,...,t

∗
k
(Gn) ⇒ πt∗1 ,...,t

∗
k
(Z).

Proof. For simplicity, we will only consider two-dimensional distributions. To
see that πt∗1 ,t

∗
2
(Gn) ⇒ πt∗1 ,t

∗
2
(Z), notice that, for some ϵn → 0,

P (Gn(t
∗
1) ≤ a1, Gn(t

∗
2) ≤ a2)

= P
Ä
n1/2(Fn(t

∗
1)− Φ(t∗1)) ≤ a1, n

1/2(Fn(t
∗
2)− Φ(t∗2)) ≤ a2

ä
≤ P

(
n1/2(F̄n(t

∗
1 − ϵnn

−1/2)− Φ(t∗1)) ≤ a1,
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n1/2(F̄n(t
∗
2 − ϵnn

−1/2)− Φ(t∗2)) ≤ a2

)
≤ P

(
n1/2(F̄n(t

∗
1 − ϵnn

−1/2)− Φ(t∗1 − ϵnn
−1/2)) ≤ a1 + ϵn,

n1/2(F̄n(t
∗
2 − ϵnn

−1/2)− Φ(t∗2 − ϵnn
−1/2)) ≤ a2 + ϵn

)
(44)

= P
Ä
Ḡn(t

∗
1 − ϵnn

−1/2) ≤ a1 + ϵn, Ḡn(t
∗
2 − ϵnn

−1/2) ≤ a2 + ϵn
ä

≤ P
Ä
Ḡn(t

∗
1 − ϵnn

−1/2) ≤ a1 + ϵ, Ḡn(t
∗
2 − ϵnn

−1/2) ≤ a2 + ϵ
ä

(45)

→ P (Z(t∗1) ≤ a1 + ϵ, Z(t∗2) ≤ a2 + ϵ) (46)

≤ P (Z(t∗1) ≤ a1, Z(t∗2) ≤ a2) + δ. (47)

The inequality (44) follows from |Φ′| ≤ 1. The inequality (45) holds from some
n on for any ϵ > 0. By making ϵ sufficiently small we can make the δ in (47)
arbitrarily small. The convergence (46) follows from Lemma 8 below. In the
same way we can prove the opposite inequality

P (Gn(t
∗
1) ≤ a1, Gn(t

∗
2) ≤ a2)

= P
Ä
n1/2(Fn(t

∗
1)− Φ(t∗1)) ≤ a1, n

1/2(Fn(t
∗
2)− Φ(t∗2)) ≤ a2

ä
≥ P

(
n1/2(F̄n(t

∗
1 + ϵnn

−1/2)− Φ(t∗1)) ≤ a1,

n1/2(F̄n(t
∗
2 + ϵnn

−1/2)− Φ(t∗2)) ≤ a2

)
≥ P

(
n1/2(F̄n(t

∗
1 + ϵnn

−1/2)− Φ(t∗1 + ϵnn
−1/2)) ≤ a1 − ϵn,

n1/2(F̄n(t
∗
2 + ϵnn

−1/2)− Φ(t∗2 + ϵnn
−1/2)) ≤ a2 − ϵn

)
= P
Ä
Ḡn(t

∗
1 + ϵnn

−1/2) ≤ a1 − ϵn, Ḡn(t
∗
2 + ϵnn

−1/2) ≤ a2 − ϵn
ä

≥ P
Ä
Ḡn(t

∗
1 + ϵnn

−1/2) ≤ a1 − ϵ, Ḡn(t
∗
2 + ϵnn

−1/2) ≤ a2 − ϵ
ä

→ P (Z(t∗1) ≤ a1 − ϵ, Z(t∗2) ≤ a2 − ϵ)

≥ P (Z(t∗1) ≤ a1, Z(t∗2) ≤ a2)− δ.

The second step in the proof of Theorem 3 is to prove the tightness of the
perturbed empirical distribution functions for the residuals.

Lemma 7. The sequence Gn, n = 1, 2, . . ., is tight.

Proof. We will use the standard notation for càdlàg functions x on a closed
interval of the real line (Billingsley, 1999, Section 12): j(x) stands for the
size of the largest jump of x, wx(T ) := sups,t∈T |x(s)− x(t)| for any sub-
set T of the domain of x, wx(δ) := supt wx[t, t + δ] for any δ > 0, and
w′

x(δ) := inf{ti} maxi∈{1,...,v} wx[ti−1, ti), where t0 < t1 < · · · < tv range
over the partitions of the domain [t0, tv] of x that are δ-sparse in the sense
of mini∈{1,...,v}(ti − ti−1) > δ.

We know that Ḡn ⇒ Z and, therefore, Ḡn is tight. By Billingsley (1999,
Theorem 13.4), the continuity of Z implies that j(Ḡn) ⇒ 0. This can be written
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as
∀ϵ > 0 : lim

n
P(j(Ḡn) ≥ ϵ) = 0

and in combination with

∀ϵ > 0 : lim
δ↓0

lim sup
n→∞

P(w′
Ḡn

(δ) ≥ ϵ) = 0

(this is Billingsley 1999, Theorem 13.2(ii)) and

wx(δ) ≤ 2w′
x(δ) + j(x)

(this is Billingsley 1999, (12.9)) implies

∀ϵ > 0 : lim
δ↓0

lim sup
n→∞

P(wḠn
(δ) ≥ ϵ) = 0. (48)

The statement of the lemma will follow from Billingsley (1999, Theorem 13.2,
Corollary). We will only check condition (ii) (i.e., (7.7) in Billingsley 1999) for
Gn; in other words, we will check (48) with Gn in place of Ḡn. It suffices to
notice that

wGn
(δ) = sup

|t2−t1|≤δ

|Gn(t2)−Gn(t1)| = sup
|t2−t1|≤δ

(Gn(t2)−Gn(t1))

= sup
|t2−t1|≤δ

√
n (Fn(t2)− Φ(t2)− Fn(t1) + Φ(t1))

≤ sup
|t2−t1|≤δ

√
n
Ä
F̄n(t2 + ϵnn

−1/2)− Φ(t2)− F̄n(t1 − ϵnn
−1/2) + Φ(t1)

ä
≤ sup

|t2−t1|≤δ

√
n
(
F̄n(t2 + ϵnn

−1/2)− Φ(t2 + ϵnn
−1/2)

− F̄n(t1 − ϵnn
−1/2) + Φ(t1 − ϵnn

−1/2)
)
+ ϵnn

−1/2

= sup
|t2−t1|≤δ

Ä
Ḡn(t2 + ϵnn

−1/2)− Ḡn(t1 − ϵnn
−1/2)

ä
+ ϵnn

−1/2

≤ sup
|t′2−t′1|≤2δ

(
Ḡn(t

′
2)− Ḡn(t

′
1)
)
+ ϵnn

−1/2 (49)

= wḠn
(2δ) + ϵnn

−1/2,

where the inequality (49) holds from some n on.

Now Theorem 3 follows from Lemmas 6 and 7 by Billingsley (1999, Theo-
rem 13.1).

The following lemma was used in the proof of Lemma 6.

Lemma 8. Suppose a sequence Ḡn of random functions in D(−∞,∞) weakly
converges to a random function Z in C(−∞,∞) and suppose tn → t are real
numbers (or, more generally, tn are random variables converging to t in proba-
bility). Then Ḡn(tn) weakly converges to Z(t).

Proof. By Billingsley (1999, Theorem 3.9), (Ḡn, tn) ⇒ (Z, t). By the mapping
theorem (Billingsley, 1999, Theorem 2.7), Ḡn(tn) ⇒ Z(t).
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Proofs for the studentized LSPM

Let us see that Theorems 2 and 3 still hold for the deleted and studentized
LSPM. For concreteness, we will only consider the studentized LSPM. We have
the following stronger form of Lemma 5.

Lemma 9. Under conditions A1–A4, maxi,j=1,...,n+1

∣∣h̄i,j

∣∣ = O(n−1).

Proof. As in the proof of Lemma 5, we have, for all permitted sequences
x1, x2, . . .,

max
i,j=1,...,n

|hi,j | ≤
maxi,j=1,...,n ∥xi∥ ∥xj∥

λmin(X ′X)
= O(1).

It remains to combine this with (20), (21), and the statement of Lemma 5.

We will use the old notation B and A for the ordinary LSPM, (41)–(42), but
will supply B and A with primes, writing B′ and A′, for the studentized LSPM,
(15)–(16). Since B and B′ are very close to 1,

B′
i =
»
1− h̄n+1 +

h̄i,n+1√
1− h̄i

= 1 +O(n−1),

Bi = 1− h̄n+1 + h̄i,n+1 = 1 +O(n−1),

we only need to check that A and A′ are very close between themselves. The
difference between them,

A′
i −Ai =

Ç∑n
j=1 h̄j,n+1yj√
1− h̄n+1

+
yi −

∑n
j=1 h̄i,jyj√
1− h̄i

å
−

Ñ
n∑

j=1

h̄j,n+1yj + yi −
n∑

j=1

h̄i,jyj

é
=

n∑
j=1

O(n−2)yj +O(n−1)yi +

n∑
j=1

O(n−2)yj ,

has a Gaussian distribution conditionally on x1, x2, . . ., and its variance is
O(n−2). Now it suffices to apply the method of the previous subsection to

t′i :=
A′

i/B
′
i − ŷn+1

σ
,

which can also be regarded as perturbed t̄i.

7 Experimental results

In this section we explore experimentally the validity and efficiency of the stu-
dentized LSPM.
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Figure 2: The cumulative sums Sn of the p-values vs n = 1, . . . , 1000

Online validity

First we check experimentally the validity of our methods in the online mode of
prediction. It is guaranteed by our theoretical results but provides an opportu-
nity to test the correctness of our implementation.

We generate IID observations zn = (xn, yn), n = 1, . . . , 1001, and the corre-
sponding p-values pn := Qn(yn+1, τn), n = 1, . . . , N , N := 1000, in the online
mode. In our experiments, xn ∼ N(0, 1), yn ∼ 2xn + N(0, 1), and, as usual,
τn ∼ U , all independent. Figure 2 plots Sn :=

∑n
i=1 pi vs n = 1, . . . , N ; as

expected, it is an approximately straight line with slope 0.5. Figure 3 presents
three plots: the cumulative sums Sα

n :=
∑n

i=1 1{pi≤α}, where 1 is the indicator
function, vs n = 1, . . . , N , for three values of α, α ∈ {0.25, 0.5, 0.75}. For each
of the three αs the result is an approximately straight line with slope α. Finally,
Figure 4 plots Aα

N against α ∈ [0, 1], where Aα
N := 1

N

∑N
i=1 1{pi≤α}. The result

is, approximately, the main diagonal of the square [0, 1]2, as it should be.

Efficiency

Next we explore empirically the efficiency of the studentized LSPM. Figure 5
compares the conformal predictive distribution with the true (Oracle III’s) dis-
tribution for four randomly generated test objects and a randomly generated
training sequence of length 10 with 2 attributes. The first attribute is a dummy
all-1 attribute; remember that Theorems 2 and 3 depend on the assumption
that one of the attributes is an identical 1 (without it, the plots become qual-
itatively different: cf. Chen 1991, Corollary 2.4.1). The second attribute is
generated from the standard Gaussian distribution, and the labels are gener-
ated as yn ∼ 2xn,2 + N(0, 1), xn,2 being the second attribute. We also show
(with thinner lines) the output of Oracle I and Oracle II, but only for the sim-
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Figure 3: The cumulative sums Sα
n vs n = 1, . . . , 1000 for α ∈ {0.25, 0.5.0.75}

plified versions, in order not to clutter the plots. Instead, in the left-hand plot
of Figure 6 we show the first plot of Figure 5 that is normalized by subtracting
the true distribution function; this time, we show the output of both simplified
and proper Oracles I and II; the difference is not large but noticeable. The
right-hand plot of Figure 6 is similar except that the training sequence is of
length 100 and there are 20 attributes generated independently from the stan-
dard Gaussian distribution except for the first one, which is the dummy all-1
attribute; the labels are generated as before, yn ∼ 2xn,2 +N(0, 1).

Since Oracle III is more powerful than Oracles I and II (it knows the true
data-generating distribution), it is more difficult to compete with; therefore,
the black line is farther from the shaded area than the blue and red lines for all
four plots in Figure 5. The estimated distribution functions being to the left
of the true distribution functions is a coincidence: the four plots correspond to
the values 0–3 of the seed for the R pseudorandom number generator, and for
other seeds the estimated distribution functions are sometimes to the right and
sometimes to the left.

8 Conclusion

This paper introduces conformal predictive distributions in regression prob-
lems. Their advantage over the usual conformal prediction intervals is that
a conformal predictive distribution Qn contains more information; in partic-
ular, it can produce a plethora of prediction intervals: e.g., for each ϵ > 0,
{y ∈ R | ϵ/2 ≤ Qn(y, τ) ≤ 1 − ϵ/2} is a conformal prediction interval at confi-
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Figure 4: The calibration curve: Aα
N vs α ∈ [0, 1] for N = 1000

dence level 1− ϵ.
These are natural possible topics for further research:

� This paper is based on the most traditional approach to weak conver-
gence of empirical processes, originated by Skorokhod and described in
detail by Billingsley (1999). This approach encounters severe difficulties
in more general situations (such as multi-dimensional labels). Alternative
approaches have been proposed by numerous authors, including Dudley
(using the uniform topology and ball σ-algebra, Dudley 1966, 1967) and
Hoffmann-Jørgensen (dropping measurability and working with outer in-
tegrals; see, e.g., van der Vaart and Wellner 1996, Section 1.3 and the
references in the historical section). Translating our results into those
alternative languages might facilitate various generalizations.

� Another generalization of the traditional notion of weak convergence is
Belyaev’s notion of weakly approaching sequences of random distributions
(Belyaev and Sjöstedt–de Luna, 2000). When comparing the LSPM with
Oracle III, we limited ourselves to stating the absence of weak convergence
and calculating the asymptotics of 1-dimensional distributions; Belyaev’s
definition is likely to lead to more precise results.

� The recent paper by Nouretdinov et al. (2018) uses inductive Venn–Abers
predictors to produce predictive distributions, with very different guar-
antees of validity. Establishing connections between the approach of this
paper and that of Nouretdinov et al. (2018) is an interesting direction of
further research.
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Figure 5: Examples of true predictive distribution functions (black), their con-
formal estimates (represented by the shaded areas), and the distribution func-
tions output by simplified Oracle I (red) and Oracle II (blue) for a tiny training
sequence (of length 10 with two attributes, the first one being the dummy all-1
attribute); in black and white, the true predictive distribution functions are the
thick lines, and Oracle I is always farther from them in the uniform metric than
Oracle II is
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