
Conformal testing: binary case with

Markov alternatives

Vladimir Vovk, Ilia Nouretdinov, and Alex Gammerman

ïðàêòè÷åñêèå âûâîäû

òåîðèè âåðîÿòíîñòåé

ìîãóò áûòü îáîñíîâàíû

â êà÷åñòâå ñëåäñòâèé

ãèïîòåç î ïðåäåëüíîé

ïðè äàííûõ îãðàíè÷åíèÿõ

ñëîæíîñòè èçó÷àåìûõ ÿâëåíèé

On-line Compression Modelling Project (New Series)

Working Paper #36

November 9, 2021

Project web site:
http://alrw.net



Abstract

We continue study of conformal testing in binary model situations. In this note
we consider Markov alternatives to the null hypothesis of exchangeability. We
propose two new classes of conformal test martingales; one class is statistically
efficient in our experiments, and the other class partially sacrifices statistical
efficiency to gain computational efficiency.
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1 Introduction

This note treats a problem similar to the one considered in [3]: we would like to
test online the null hypothesis of exchangeability of binary observations under
Markov alternatives.

The simplest way of online hypothesis testing is to use test martingales,
which are defined as nonnegative processes with initial value 1 that are mar-
tingales under the null hypothesis; see, e.g., [4]. Such processes, for the null
hypothesis of exchangeability, can be constructed using the method of confor-
mal prediction [7], and we will refer to them as conformal test martingales.
A previous paper [6] constructs custom-made conformal test martingales for
different alternative hypotheses, those of a changepoint.

The method of [3], which is specifically devoted to Markov alternatives, is
more general: instead of a test martingale the authors construct a “safe e-pro-
cess” (to be defined in the next section). Safe e-processes are closely related to
test martingales and admit a similar interpretation as the capital of a gambler
trying to discredit the null hypothesis. Our methods give similar results to the
methods of [3] in the model situations that we consider (following [3]). The
advantage of our methods is that they extend easily to the usual setting of ma-
chine learning, where the observations are pairs (x, y) consisting of a potentially
complex object x and its label y.

In this note we only design conformal test martingales for a simple alternative
hypothesis (a specific probability measure). This is different from [3], who are
interested in testing against the composite alternative Markov hypothesis. As
in [3], we could mix our conformal test martingales over the possible alternative
hypotheses, but we leave this step for future research.

2 Model situations

This section introduces the model situations considered in this paper, follow-
ing [3, Section 4.2]. Our data consist of binary observations generated from
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Figure 1: The process R of [3] and the Simple Jumper in the large scenario.
Left panel: the hard case. Right panel: the easy case.
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a Markov model. We will use the notation Markov(π1|0, π1|1) for the proba-
bility distribution of a Markov chain with the transition probabilities π1|0 for
transitions 0 → 1 and π1|1 for transitions 1 → 1; the probability that the first
observation is 1 will always be assumed 0.5. In the hard case, the model is
Markov(0.4, 0.6), and in the easy case, the model is Markov(0.1, 0.9). The num-
ber of observations is N := 104 (as in [3]) or N := 103 or N := 102; we will
refer to these scenarios as large, medium, and small, respectively.

In all our experiments we use 2021 as the seed for the NumPy pseudorandom
number generator. (This, however, does not make the trajectories in our plots
comparable between different scenarios.) The dependence on the seed will be
explored in boxplots reported in Section 5; the seed affects not only the data
but also the values of conformal martingales, which are randomized processes,
given the data.

Let Bπ be the Bernoulli distribution on {0, 1} with parameter π ∈ [0, 1]:
Bπ({1}) = π. Set Ber(π) := B∞

π . Our null hypothesis is the IID model, under
which the observations are generated from Ber(π) with unknown parameter π.

Ramdas et al. construct a safe e-process R = Rn: namely, under any Ber(π),

R is dominated by a test martingale M
(π)
n w.r. to Ber(π), in the sense that

Rn ≤ M
(π)
n for all n and π. The trajectories of their process for the two cases,

hard and easy, are shown in Figure 1 (they coincides with those in Figure 4
in [3] apart from using base 10 logarithms and a different randomly generated
dataset). The figure also shows trajectories of the Simple Jumper martingale
(see, e.g., [5]) for various values of the jumping rate; it performs poorly in this
context.

3 Two benchmarks

In this section we will discuss possible benchmarks that we can use for evaluating
the quality of our conformal test martingales. The upper benchmark is

UBn :=
Markov(π1|0, π1|1)([z1, . . . , zn])

Ber(0.5)([z1, . . . , zn])
, (1)

where [z1, . . . , zn] is the set of all infinite sequences of binary observations start-
ing from z1, . . . , zn, and z1, z2, . . . are the actual observations. The lower bench-
mark is

LBn :=
Markov(π1|0, π1|1)([z1, . . . , zn])

Ber(π̂)([z1, . . . , zn])
, (2)

where π̂ := k/n (the maximum likelihood estimate) and k = k(n) is the number
of 1s among z1, . . . , zn. By definition, UB0 = LB0 := 1.

The trajectories of the upper and lower benchmarks are shown in Figure 2
in red and green; the figure also shows the trajectory the R process discussed in
the previous section, and the other two trajectories should be ignored for now.
The two benchmarks coincide or almost coincide. Figure 3 should the same
trajectories “under the lens”, over the last 1000 observations. Notice that the
upper benchmark can never be less than the lower benchmark.
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Figure 2: The two benchmarks, R process, Bayes–Kelly conformal test mar-
tingale, and its simplified version in the large scenario. Left panel: hard case
(the trajectories for the two benchmarks and Bayes–Kelly almost coincide).
Right panel: easy case (the trajectories for the two benchmarks, R process, and
Bayes–Kelly virtually coincide).
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Figure 3: The analogue of Figure 2 for the last 1000 observations (as in that
figure, in the right panel, the trajectories for the two benchmarks, R process,
and Bayes–Kelly virtually coincide).

4 Bayesian conformal testing

In this section we will use a Bayesian method that is statistically efficient in
our experiments but whose computational efficiency will be greatly improved in
the next section. The p-values p1, p2, . . . are generated as described in [6]; in
particular, we are using the identity nonconformity measure (the nonconformity
score of an observation z is z). Under the alternative hypothesis, the p-values
are generated by a completely specified stochastic mechanism. According to [1,
Theorem 2], the optimal (in the Kelly-type sense of that paper) betting functions
fn are given by the density of the predictive distribution of pn conditional on
knowing p1, . . . , pn−1. Let us find these predictive distributions. We will use
the notation U [a, b], where a < b, for the uniform probability distribution on
the interval [a, b] (so that its density is 1/(b− a)).
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Algorithm 1 Bayes–Kelly ((p1, p2, . . . ) 7→ (S1, S2, . . . ))

1: S0 := S1 := 1
2: Set the initial weights as per (3).
3: for n = 2, 3, . . . :
4: Sn := fn(pn)Sn−1, with fn defined by (7).
5: Update the weights as per (4)–(6).

We are in a typical situation of Bayesian statistics. The Bayesian parameter
is the binary sequence (z1, z2, . . . ) ∈ {0, 1}∞ of observations, and the prior
distribution on the parameter is Markov(π1|0, π1|1). The Bayesian observations
are the conformal p-values p1, p2, . . . . Given the parameter, the distribution of
pn is

pn ∼

{
U [0, k/n] if zn = 1

U [k/n, 1] if zn = 0,

where k := z1 + · · ·+ zn is the number of 1s among the first n observations.
Let wn

k,j , where n = 1, 2, . . . , k = 0, . . . , n, and j ∈ {0, 1}, be the total
posterior probability of the parameter values z1, z2, . . . for which z1+· · ·+zn = k
and zn = j; we will use them as the weights when computing the predictive
distributions for the p-values. We can compute the weights wn

k,j recursively in
n as follows. We start from

w1
0,0 := w1

1,1 := 0.5, w1
0,1 := w1

1,0 := 0. (3)

At each step n ≥ 2, first we compute the unnormalized weights

w̃n
k,0 :=

(
wn−1

k,0 π0|0 + wn−1
k,1 π1|0

)
ln−1
k (0, pn), (4)

w̃n
k,1 :=

(
wn−1

k−1,0π1|0 + wn−1
k−1,1π1|1

)
ln−1
k−1 (1, pn), (5)

where l is the likelihood defined by

lnk (1, p) :=

{
n+1
k+1 if p ≤ k+1

n+1

0 otherwise,

lnk (0, p) :=

{
n+1

n−k+1 if p ≥ k
n+1

0 otherwise,

and then we normalize them:

wn
k := w̃n

k/

m∑
k=0

1∑
j=0

w̃n
k,j . (6)

Given the posterior weights for the previous step, we can find the predictive
distribution for pn as

pn ∼
n−1∑
k=0

1∑
j=0

wn−1
k,j

(
π1|jU

[
0,

k + 1

n

]
+ π0|jU

[
k

n
, 1

])
,
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Figure 4: The Bayes–Kelly and Bayes–Kelly simplified conformal test martin-
gales, the R-process, and the two benchmarks in the middle scenario. Left panel:
hard case. Right panel: easy case (the trajectories for the two benchmarks, R
process, and Bayes–Kelly virtually coincide).

where we use the shorthand π0|j := 1 − π1|j . Therefore, the betting functions
for the resulting Bayes–Kelly conformal test martingale are

fn(p) =

n−1∑
k=0

1∑
j=0

wn−1
k,j

(
n

k + 1
π1|j1p≤ k+1

n
+

n

n− k
π0|j1p≥ k

n

)
. (7)

The procedure is summarized as Algorithm 1.
For experimental results, see Figure 4, in addition to Figure 2. The Bayes–

Kelly conformal test martingale appears to be very close to the two benchmarks.
Its simplified version is described in the next section. The relatively poor perfor-
mance of the R-process in the left panel of Figure 4 should not be interpreted
as it being inferior to the Bayes–Kelly conformal test martingale: remember
that R works against all Markov alternatives, whereas the other processes in
Figures 2–8 are adapted to the specific alternative hypothesis (Markov(0.4, 0.6)
in the hard case and Markov(0.1, 0.9) in the easy case).

5 Simplified Bayesian conformal testing

In this section we consider a radical simplification of the Bayes–Kelly conformal
test martingale (7). We still assume that the Markov chain is symmetric, as in
our model situations. If we assume that the weights wn

k,j , k = 0, . . . , n, are
concentrated at

k ≈ k + 1 ≈ n/2,

(7) will simplify to

fn(p) = 2π1|j1p≤0.5 + 2π0|j1p>0.5. (8)

Figure 5 shows the weights (averaged over j ∈ {0, 1}) for the last step of the
Bayes–Kelly conformal test martingale in the medium scenario (103 observa-
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Figure 5: The weights w1000
k , k = 0, . . . , 1000, at the last step for the Bayes–

Kelly conformal test martingale in the medium scenario (the hard case on the
left and easy on the right).

Algorithm 2 Simplified Bayes–Kelly ((p1, p2, . . . ) 7→ (S1, S2, . . . ))

1: S0 := S1 := 1
2: for n = 2, 3, . . . :
3: if pn−1 ≤ 0.5:
4: j := 1
5: else:
6: j := 0

7: if pn ≤ 0.5:
8: Sn := 2π1|jSn−1

9: else:
10: Sn := 2π0|jSn−1

tions). They are indeed concentrated around values of k not so different from
0.5N = 500. The procedure is summarized as Algorithm 2.

As a second step, we make (8) straightforward to compute by setting

j :=

{
1 if pn−1 ≤ 0.5

0 if not.

(If k(n−1) := z1+ · · ·+zn−1 ≈ (n−1)/2, then j = zn−1 with high probability.)
The performance of the simplified version is shown in Figures 2–4 and 6. It is
usually worse than that of the Bayes–Kelly conformal test martingale and the
two benchmarks, but is comparable on the log scale apart from the right panel
of Figure 6.

The right panel of Figure 6 and Figures 7 and 8 show that the statistical
performance of the simplified Bayes–Kelly martingale particularly suffers in the
easy case. The notches in the boxplots in Figures 7 and 8 indicate confidence
intervals for the median.
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Figure 6: The analogue of Figures 2 and 4 for the small scenario.
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Figure 7: Boxplots based on 103 runs for the final values of the two benchmarks
(upper UB and lower LB), the Bayes–Kelly conformal test martingale (BK),
and its simplified version (sBK) in the medium scenario. Left panel: hard case.
Right panel: easy case.
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A Asymmetric Markov alternatives

In the main part of this note we considered, following [3, Section 4.2],the case
of symmetric Markov alternatives (i.e., the case ∀i, j : πi|j = πj|i). In this
appendix we do not assume symmetry and only assume mini,j πi|j > 0; in
particular, the Markov chain is aperiodic and irreducible. We still assume that
the initial distribution of the Markov chain is uniform (although Proposition 1
below only needs the initial distribution to be positive, i.e., both probabilities
to be positive).

The definition of the lower benchmark (2) still works in the asymmetric case,
but in the definition of the upper benchmark (1) we replace Ber(0.5) in the
denominator by Ber(π1), where π1 is the probability of 1 under the stationary
distribution for the Markov chain. By definition, the stationary distribution
(π0, π1), where π0 is the probability of 0, satisfies{

π0|0π0 + π0|1π1 = π0

π1|0π0 + π1|1π1 = π1.
(9)

By the ergodic theorem [2, Theorem 1.10.2], this choice of the denominator for
the likelihood ratio process makes the upper benchmark as close to the lower
benchmark as possible asymptotically. The following proposition says that this
choice of the denominator is asymptotically optimal.
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Proposition 1. For any x ∈ (0, 1),

Markov(π1|0, π1|1)([z1, . . . , zn])

Ber(x)([z1, . . . , zn])
>

Markov(π1|0, π1|1)([z1, . . . , zn])

Ber(π1)([z1, . . . , zn])

from some n on almost surely under Markov(π1|0, π1|1).

Proof. We have, almost surely as n → ∞ (by the ergodic theorem and strong
law of large numbers for martingales),

1

n
log

Markov(π1|0, π1|1)([z1, . . . , zn])

Ber(x)([z1, . . . , zn])

= π0|0π0 log
π0|0

1− x
+ π1|0π0 log

π1|0

x
+ π0|1π1 log

π0|1

1− x
+ π1|1π1 log

π1|1

x
+ o(1)

= π0|0π0 log
1

1− x
+ π1|0π0 log

1

x
+ π0|1π1 log

1

1− x
+ π1|1π1 log

1

x
+ c+ o(1)

= π0 log
1

1− x
+ π1 log

1

x
+ c+ o(1) > π0 log

1

π0
+ π1 log

1

π1
+ c+ o(1)

=
1

n
log

Markov(π1|0, π1|1)([z1, . . . , zn])

Ber(π1)([z1, . . . , zn])
+ o(1),

where c is a constant (depending only on the πs), the penultimate “=” follows
from (9), and the last inequality, “>”, disregards the o(1) terms and follows
from the positivity of the Kullback–Leibler distance in this context.

The Bayes–Kelly conformal test martingale (Algorithm 1) also works for
asymmetric Markov chains. Let us derive the simplified Bayes–Kelly conformal
test martingale (Algorithm 2) in the non-symmetric case. The solution to (9) is

π1 =
π1|0

π1|0 + π0|1
.

When
k ≈ k + 1 ≈ nπ1,

(7) will lead to

fn(p) =
π1|j

π1
1p≤π1

+
π0|j

π0
1p>π1

in place of (8). It remains to set

j :=

{
1 if pn−1 ≤ π1

0 if not.

Examples of the performance of various processes in simulation studies with
asymmetric Markov alternatives are shown in Figures 9 and 10 (the poor perfor-
mance of the R process in the left panel of Figure 9 should be ignored, since the
comparison is not fair, as discussed earlier). In the semi-hard case the model is
Markov(0.4, 0.5), and in the semi-easy case, the model is Markov(0.1, 0.5).
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Figure 9: The analogue of Figures 2, 4, and 6 for the medium scenario and the
semi-hard (left) and semi-easy (right) cases.
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Figure 10: The analogue of Figures 7 and 8 for the medium scenario and the
semi-hard (left) and semi-easy (right) cases.
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