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Abstract

The topic of this paper is testing exchangeability using e-values in the batch
mode, with the Markov model as alternative. The null hypothesis of exchange-
ability is formalized as a Kolmogorov-type compression model, and the Bayes
mixture of the Markov model w.r. to the uniform prior is taken as simple alter-
native hypothesis. Using e-values instead of p-values leads to a computationally
efficient testing procedure. In the appendixes I explain connections with the
algorithmic theory of randomness and with the traditional theory of testing sta-
tistical hypotheses. In the standard statistical terminology, this paper proposes
a new permutation test. This test can also be interpreted as a poor man’s
version of Kolmogorov’s deficiency of randomness.
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1 Introduction

The usual approach to testing exchangeability in statistics is based on using
p-values, as in [12, Sect. 7.2]. In this paper we will use e-values instead [36, 3],
which facilitates computations. E-values have been used for testing exchange-
ability via conformal prediction [32, Part III] in the online protocol, while in this
paper we will use the standard batch protocol: we are given the data sequence
as one batch rather than getting its elements sequentially one by one.

The null hypothesis of exchangeability will be defined in Sect. 2 using the
terminology of compression modelling [32, Chap. 11]. Compression modelling is
an algorithm-free version of Kolmogorov’s way of stochastic modelling: cf. [29],
[33], [38, Sect. 2], and [32, Sect. 11.6.1]. Kolmogorov’s original version will be
discussed in Appendix A.

In Sect. 2 we also define e-variables, our tools for obtaining e-values in testing
exchangeability (or another null hypothesis). We will derive our main e-variable
as likelihood ratio for a Markovian alternative hypothesis, which we will intro-
duce in Sect. 4. A simple optimality property of the likelihood ratios is derived
in Sect. 3.

After defining our main alternative hypothesis in Sect. 4, we derive an effi-
cient algorithm for computing the corresponding e-variable. The power of this
e-variable is the topic of Sect. 5. The algorithm’s performance in view of the
results of Sect. 5 is studied in Sect. 6 using simulated data. Section 7 concludes.

In Appendix A I describe Kolmogorov’s original ideal picture of algorithmic
randomness. In the following Appendix B we will discuss possible ways of mak-
ing this picture more practical, and in Appendix C will go deeper into another
class of alternatives for testing exchangeability (namely, into the changepoint
alternatives).

In traditional statistics, the p-value version of the procedure of this paper is
often presented in terms of the Neyman structure; see, e.g., [13, Sect. 4.3]. We
discuss its counterpart for e-values in Appendix D.

2 Testing exchangeability

We consider the simplest binary case, and our observation space is Z := {0, 1}.
Fix an integer N > 1, which we will refer to as the horizon. We are interested
in binary data sequences (z1, . . . , zN ) ∈ Ω := ZN . A Kolmogorov compression
model (KCM) is a summarising statistic t : Ω → Σ, where Σ is a finite set (the
summary space), together with the implicit statement that given the summary
t(z1, . . . , zN ) (for which we do not make any stochastic assumptions) the actual
data sequence (z1, . . . , zN ) is generated from the uniform probability measure.
Our null hypothesis is the KCM, which we call the Kolmogorov exchangeability
model, tE(z1, . . . , zN ) := z1 + · · ·+ zN .

Let us say that a probability measure P agrees with a summarising statistic
t if the data sequences with the same summary have the same P -probability.
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Lemma 2.1. The exchangeable probability measures on Ω are exactly the prob-
ability measures that agree with the Kolmogorov exchangeability model (the mix-
tures of the uniform probability measures on t−1

E (k)).

The easy proof of Lemma 2.1 is omitted. It shows that, in terms of stan-
dard statistical modelling, we can define our null hypothesis as the set of all
exchangeable probability measures on Ω.

An e-variable w.r. to a probability measure is a nonnegative function on Ω
with expectation at most 1. An exchangeability e-variable is a function E :
Ω → [0,∞) whose average over each t−1

E (k) is at most 1. Alternatively, it is an
exchangeability e-variable w.r. to any exchangeable probability measure.

Proposition 2.2. The two meanings of an exchangeability e-variable coincide.

Proof. If the average of E over each t−1
E (k) is at most 1, it will be an e-variable

w.r. to each exchangeable probability measure by Lemma 2.1.
Now suppose E is an e-variable w.r. to each exchangeable probability mea-

sure. Since the uniform probability measure on t−1
E (k) is exchangeable, the

average of E over t−1
E (k) will be at most 1.

All null hypotheses considered in this paper will be Kolmogorov compression
models. In the main part of the paper we will concentrate on the exchangeability
model, but in this and next section we will also give more general definitions.
An e-variable w.r. to a KCM t is a function E : Ω → [0,∞) such that the
arithmetic mean of E over t−1(σ) is at most 1 for any σ ∈ t(Ω). E-values are
values taken by e-variables.

Disintegration of the alternative hypothesis

Let us fix an alternative hypothesis Q, which is a probability measure on Ω.
Our statistical procedures will depend on Q only via the corresponding batch
compression model (BCM). A BCM is a pair (t, P ) such that t : Ω → Σ is a
summarising statistic and P : Σ ↪→ Ω (to use the notation of [32, Sect. A.4]) is
a Markov kernel such that P (σ) is concentrated on t−1(σ) for each σ ∈ Σ. As
before, we refer to t(ω) as the summary of ω. Kolmogorov compression models
are a special case in which P (σ) are the uniform probability measures on t−1(σ).

Remark 2.3. Batch compression models are in fact standard and are often used
without giving them any name, as in [11].

With an alternative hypothesis Q and a null hypothesis t we associate the
alternative Markov kernel

Qσ({ω}) :=
Q({ω})

Q(t−1(σ))
, σ ∈ Σ, ω ∈ t−1(σ).

As compared with Q, the alternative Markov kernel loses the information about
Q({σ}) for σ ∈ Σ.
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3 Frequentist performance of e-variables

Suppose Q (the alternative probability measure) is the true data-generating
distribution and we keep generating data sequences (z1, . . . , zN ) ∈ Ω from Q in
the IID fashion. The following lemma allows us to define the efficiency of an
e-variable via its frequentist performance when we keep applying it repeatedly
to accumulate capital. This is a special case of Kelly’s criterion [6].

Lemma 3.1. Consider an e-variable E w.r. to a Kolmogorov compression model
t : Ω → Σ. For any alternative probability measure Q on Ω, the limit1

epQ(E) := lim
I→∞

1

I
ln

I∏
i=1

E(zi1, . . . , z
i
N ) (1)

where (zi1, . . . , z
i
N ) is the ith data sequence generated from Q independently,

exists Q∞-almost surely. Moreover, for all E and Q,

epQ(E) =

∫
lnE dQ. (2)

The interpretation of (1) is that our capital
∏I

i=1 E(zi1, . . . , z
i
N ) grows ex-

ponentially fast (we will see later, in Lemma 3.2, that we can indeed expect it
to grow rather than shrink if we can guess a good Q), and its rate of growth is
given by the expression (2), which we will refer to as the e-power of E under
the alternative Q.

Proof. It suffices to rewrite (1) as

epQ(E) = lim
I→∞

1

I

I∑
i=1

lnE(zi1, . . . , z
i
N )

and apply Kolmogorov’s law of large numbers to the IID random variables
lnE(zi1, . . . , z

i
N ) with expectation

∫
lnE dQ (which exists and is finite since the

sample space is assumed to be finite).

To justify the expression (2) using frequentist considerations, we do not really
need the IID picture, as emphasized by Neyman [18, Sect. 10]. When generating
zi1, . . . , z

i
N for different i, we may test different Kolmogorov compression models

t = ti, perhaps with different horizons N = Ni, against different alternatives
Q = Qi. The corresponding generalization of Lemma 3.1 states that the long-
term rate of growth of our capital will be asymptotically close to the arithmetic
average of

∫
lnEi dQi. It will involve certain regularity conditions needed for the

applicability of the martingale strong law of large numbers (e.g., in the form
of [24, Chap. 4], which allows non-stochastic choice of Ni, ti, and Qi) If the
alternative hypothesis does not hold in all trials, Lemma 3.1 is still applicable
to the trials where it does hold.

Now it is easy to find the optimal, in the sense of epQ, e-variable; it will be
the ratio of the alternative Markov kernel to the null hypothesis.

1In this paper, our notation for logarithms is ln (natural) and log (binary, in Appendix A).
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Lemma 3.2. The maximum of epQ is attained at

E(ω) :=
∣∣t−1(t(ω))

∣∣Qt(ω)({ω}), ω ∈ Ω. (3)

In this case,

mep(Q) := epQ(E) =

∫
ln
∣∣t−1(σ)

∣∣ (t∗Q)(dσ) +H(t∗Q)−H(Q), (4)

where t∗Q stands for the push-forward measure of Q by t (the summarising
statistic of the null hypothesis), and H stands for the entropy.

We will call mep(Q) defined by (4) the maximum e-power of the alternative
Q. A sizeable mep(Q) for a plausible alternative Q means that the testing prob-
lem is not hopeless and has some potential. The guarantee given by Lemma 3.1,
however, is frequentist and not applicable if testing is done only once, in which
case we also want the optimal e-variable (3) not to be too volatile.

Proof. In this paper we let UA stand for the uniform probability measure on a fi-
nite set A. The optimization

∫
E dQ → max can be performed inside each block

t−1(σ) separately. Using the nonnegativity of the Kullback–Leibler divergence,
we have, for each σ ∈ t(Ω),

epQσ

(
Qσ

Ut−1(σ)

)
≥ epQσ

(E′)

for each e-variable E′ w.r. to t, which implies the first statement (about (3)) of
the lemma. The second statement (4) follows from

epQ(E) =

∫
KL(Qσ ∥ Ut−1(σ))(t∗Q)(dσ)

=

∫ (
ln
∣∣t−1(σ)

∣∣−H(Qσ)
)
(t∗Q)(dσ)

=

∫
ln
∣∣t−1(σ)

∣∣ (t∗Q)(dσ) +H(t∗Q)−H(Q),

where KL stands for the Kullback–Leibler divergence.

4 An explicit algorithm for Markov alternatives

Starting from this section we will consider a specific alternative hypothesis ob-
tained by mixing Markov probability measures. The corresponding exchange-
ability e-variable will be computable in linear time, O(N).

First let us fix some terminology. The exchangeability summary, or exchange-
ability type, of a data sequence z1, . . . , zN is the numbers (N0, N1) of 0s and 1s
in it. (It carries the same information as just the number of 1s, but we prefer
a symmetric definition despite some redundancy.) By a “substring” we always
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mean a contiguous substring. The Markov type of z1, . . . , zN is the sextuple
(F,N00, N01, N10, N11, L), where Ni,j is the number of times (i, j) occurs as
substring in the sequence z1, . . . , zN (with the comma often omitted), and F
and L are the first and last bits.

As our alternative hypothesis, we will take the uniform mixture of the
Markov probability measures, defined as follows: π01 and π10 are generated in-
dependently from the uniform distribution U[0,1] on [0, 1]; the first bit is chosen
as 1 with probability 1/2, and after that each 0 is followed by 1 with proba-
bility π01, and each 1 is followed by 0 with probability π10. Let us compute
the probability of a sequence of a Markov type (F,N00, . . . , N11, L) under this
probability measure:

1

2

∫
(1− π01)

N00πN01
01 πN10

10 (1− π10)
N11 dπ01dπ10

=
1

2
B(N00 + 1, N01 + 1)B(N10 + 1, N11 + 1)

=
1

2

Γ(N00 + 1)Γ(N01 + 1)Γ(N10 + 1)Γ(N11 + 1)

Γ(N0∗ + 2)Γ(N1∗ + 2)

=
1

2

N00!N01!N10!N11!

(N0∗ + 1)!(N1∗ + 1)!
,

(5)

where Ni∗ := Ni,0 + Ni,1. If N1−F = 0, this probability is 1
2N (which in fact

agrees with the general expression (5)).
For future use, set π00 := 1− π01 and π11 := 1− π10.
The expression (5) gives us, analogously to [32, Chap. 9] (who follow [21]),

the lower benchmark

LB :=
1

2

N00!N01!N10!N11!

(N0∗ + 1)!(N1∗ + 1)!(N0/N)N0(N1/N)N1
. (6)

The idea behind the lower benchmark is that, for any power probability measure
QN (Q being a probability measure on {0, 1}), it is an e-variable w.r. to QN ,
i.e., satisfies

∫
LBdQN ≤ 1. To ensure this, (6) is defined as the ratio of the

alternative probability measure to the maximum likelihood under the IID model.
However, the IID model is not our null hypothesis, and our null hypothesis of

exchangeability is slightly more challenging. Replacing in (6) the maximum like-
lihood over the IID model by the maximum likelihood over the exchangeability
model, we obtain the exchangeability lower benchmark

ELB :=
1

2

(
N

N1

)
N00!N01!N10!N11!

(N0∗ + 1)!(N1∗ + 1)!
. (7)

For the e-power of the exchangeability lower benchmark we have the formula (4)
with the second term H(t∗Q) omitted.

To compute efficiently the likelihood ratio of the alternative to null proba-
bility measures, we will use the following facts [31, Lemmas 8.5 and 8.6], which
are versions of standard results in graph theory (the BEST theorem and the
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Matrix-Tree theorem). We will use the terminology of [31, Section 8.6] (such as
“Markov graph”) and consider an arbitrary finite observation space Z (instead
of {0, 1}, as in the rest of this paper).

Lemma 4.1. In any Markov graph σ with the set of vertices V the number of
Eulerian paths from the source to the sink equals

T (σ)
out(sink)

∏
v∈V (out(v)− 1)!∏

u,v∈V Nu,v!
, (8)

where T (σ) is the number of spanning out-trees in the underlying digraph rooted
at the source and Nu,v is the number of darts leading from u to v.

Proof. According to Theorem VI.28 in [26] (and using the terminology of [26,
Chap. VI]), the number of Eulerian tours in the underlying digraph is

T (σ)
∏
v∈V

(out(v)− 1)!.

If source = sink, the number of Eulerian paths is obtained by multiplying by
out(source). Finally, we identify all darts from u to v for all pairs of vertices
(u, v) by dividing by Nu,v!; the resulting expression agrees with (8).

Now suppose source ̸= sink. Create a new digraph by adding another dart
leading from the source to the sink. The number of Eulerian paths from the
source to the sink in the old digraph will be equal to the number of Eulerian
tours in the new graph, i.e.,

T (σ) out(sink)
∏
v∈V

(out(v)− 1)!,

where out refers to the old digraph. It remains to identify all darts from u to v
for all pairs of vertices (u, v) in the old digraph; the resulting expression again
agrees with (8).

Alternatively, we can combine the two cases by always adding another dart
leading from the source to the sink.

Lemma 4.2. To find the number T (σ) of spanning out-trees rooted at the source
in the underlying digraph of a Markov graph σ with vertices z1, . . . , zn (z1 being
the source),

� create the n× n matrix with the elements ai,j = −Nzi,zj ;

� change the diagonal elements so that each column sums to 0;

� compute the co-factor of a1,1.

Proof. This lemma can be derived from Theorem VI.28 in [26]. In that theorem
we can compute the co-factor of any diagonal element ai,i, but it is about
Eulerian digraphs. We can make the underlying digraph of our Markov graph
Eulerian by connecting the sink to the source. This operation does not affect
the number of out-trees rooted at the source and does not change the co-factor
of a1,1.
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Let us specialize Lemmas 4.1 and 4.2 to the binary case Z := {0, 1}.

Corollary 4.3. Let σ be a Markov graph with vertices in {0, 1} with F as its
source. The number of Eulerian paths from the source to the sink equals

N(σ) :=

{
NF,1−F

(N0−1)!(N1−1)!
N00!N01!N10!N11!

if N0 ∧N1 > 0

1 otherwise,
(9)

where Ni := in(i) ∨ out(i) and Ni,j (with the comma omitted) is the number of
darts leading from i to j.

Proof. The number of spanning out-trees rooted at the source in the underlying
digraph is

T (σ) = NF,1−F ;

this follows from Lemma 4.2 and is obvious anyway. It remains to plug this in
into Lemma 4.1: assuming N0 ∧ N1 > 0, if the source F and sink L coincide,
F = L, we obtain

NF,1−F
(NF − 1)(NF − 2)!(N1−F − 1)!

N00!N01!N10!N11!
,

and if F ̸= L, we obtain

NF,1−F
(NL − 1)(NF − 1)!(NL − 2)!

N00!N01!N10!N11!
;

both expression agree with (9). The case N0 ∧N1 = 0 is obvious.

Combining (5) and (9), we obtain the total alternative weight of

W (σ) :=

{
1
2NF,1−F

(N0−1)!(N1−1)!
(N0∗+1)!(N1∗+1)! if N1−F > 0

1
2N otherwise

(10)

for all data sequences of a given Markov type σ.
Under the null hypothesis the probability of a data sequence of exchange-

ability type (N0, N1) is

1/

(
N

N1

)
,

and so the likelihood ratio (the alternative over the null of exchangeability) is

1

2

N00!N01!N10!N11!
(
N
N1

)
(N0∗+1)!(N1∗+2)!

∑
σ W (σ)

=
N00!N01!N10!N11!

(
N
N1

)
(N0∗+1)!(N1∗+2)!

∑
σ nf,1−f

(N0−1)!(N1−1)!
(n0∗+1)!(n1∗+1)!

(11)
(see (5) and (10)), where the σ in

∑
σ ranges over the Markov types

(f, n00, . . . , n11, l) compatible with the exchangeability type (N0, N1). The
equality in (11) holds when N0 ∧N1 = 0; in the case N0 ∧N1 = 0 the likelihood
value is 1 (and we will treat this case separately in Algorithm 1). We will refer
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to (11) (interpreted as 1 when N0 ∧ N1 = 0) as the uniformly mixed Markov
(UMM ) e-variable; this is our main object of interest in this paper.

It remains to explain how to compute the sum
∑

σ in (11). For the σ =
(f, n00, . . . , n11, l) with f = l = 0 (which is only possible when N0 ≥ 2), each
addend in the sum is

nf,1−f
(N0 − 1)!(N1 − 1)!

(n0∗ + 1)!(n1∗ + 1)!
= n01

(N0 − 1)!(N1 − 1)!

N0!(N1 + 1)!
=

n01

N0N1(N1 + 1)
.

A specific Markov type (f, n00, . . . , n11, l) is determined (once we know that
f = l = 0) by n01, and its other components can be found from the equalities

n01 = n10

N0 = n00 + n01 + 1

N1 = n01 + n11.

The valid values for n01 are between 1 and (N0 − 1) ∧ N1, and so the part of
the sum

∑
σ corresponding to such σ is

(N0−1)∧N1∑
n01=1

n01

N0N1(N1 + 1)
=

((N0 − 1) ∧N1)((N0 − 1) ∧N1 + 1)

2N0N1(N1 + 1)
. (12)

This component should only be used when N0 ≥ 2; otherwise, it is 0.
For the σ with f = 0 and l = 1, the part of the sum

∑
σ corresponding to

such σ is
N0∧N1∑
n01=1

n01

N0(N0 + 1)N1
=

(N0 ∧N1)(N0 ∧N1 + 1)

2N0(N0 + 1)N1
. (13)

For the σ with f = 1 and l = 0, the part of the sum
∑

σ corresponding to such
σ is

N0∧N1∑
n10=1

n10

N0N1(N1 + 1)
=

(N0 ∧N1)(N0 ∧N1 + 1)

2N0N1(N1 + 1)
. (14)

Finally, for the σ with f = l = 1, the part of the sum
∑

σ corresponding to such
σ is

N0∧(N1−1)∑
n10=1

n10

N0N1(N1 + 1)
=

(N0 ∧ (N1 − 1))(N0 ∧ (N1 − 1) + 1)

2N0(N0 + 1)N1
. (15)

This component is used only when N1 ≥ 2; otherwise, we set it to 0.
The overall algorithm is presented as Algorithm 1. The value of the uni-

formly mixed Markov e-variable UMM is computed according to (11), and the
value ELB of the exchangeability lower benchmark in line 5 is just (11) with
the sum over the Markov types σ omitted. In line 6 we initialize the sum over
the Markov types σ, and in lines 7, 8, 9, and 10 we compute it according to the
right-hand sides of (12), (13), (14), and (15), respectively. The symbol += is

8



Algorithm 1 Computing the UMM exchangeability e-variable

Input: (z1, . . . , zN ) ∈ {0, 1}N .
Output: the value of the UMM e-variable UMM(z1, . . . , zN ).
1: Set N0 and N1 to the numbers of 0s and 1s in (z1, . . . , zN ), respectively.
2: if N0 ∧N1 = 0: return 1

3: for i, j ∈ {0, 1}:
4: Set Ni,j to the number of substrings (i, j) in (z1, . . . , zN ).

5: ELB :=
N00!N01!N10!N11!( N

N1
)

(N0∗+1)!(N1∗+2)!
.

6: Sum := 0.
7: if N0 ≥ 2: Sum += ((N0−1)∧N1)((N0−1)∧N1+1)

2N0N1(N1+1) .

8: Sum += (N0∧N1)(N0∧N1+1)
2N0(N0+1)N1

.

9: Sum += (N0∧N1)(N0∧N1+1)
2N0N1(N1+1) .

10: if N1 ≥ 2: Sum += (N0∧(N1−1))(N0∧(N1−1)+1)
2N0(N0+1)N1

.

11: return ELB/Sum.

used in the Python sense: A += B is equivalent to A := A+B. The output is
returned by the return command, and the algorithm stops as soon as the first
such command is issued.

The computational complexity of Algorithm 1 is O(N) time, which is clearly
optimal.

5 Maximum e-power of the UMM alternative

In this section we will compute the asymptotic efficiency of the UMM e-variable
under the UMM alternative. In the next section we will see the weakness of
the notion of efficiency: it has a long-run frequency interpretation, but the loga-
rithm of the UMM e-variable can be extremely volatile (and so its mathematical
expectation can be very different from what we actually expect to observe).

Proposition 5.1. Under the UMM alternative Q, the asymptotic e-power of
the UMM e-variable UMM (for horizon N) satisfies

lim
N→∞

mep(Q)/N = lim
N→∞

epQ(UMM)/N =
8

3
ln 2 +

2

3
ln2 2− 7

36
π2 − 1

6
≈ 0.083.

The same expression gives the asymptotic e-power of the exchangeability lower
benchmark (and of the lower benchmark).

Proof. Let us compute separately the three components in (4), starting from
the last one.

When estimating −H(Q), we need to estimate the frequencies N00, N01,
N10, N11 for a Markov chain with transition probabilities πi,j . To this end, we
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define a new Markov chain whose states are the pairs zizi+1, i = 1, . . . , N − 1,
of adjacent states of the old chain with the matrix of transition probabilities

P :=


π00 π01 0 0
0 0 π10 π11

π00 π01 0 0
0 0 π10 π11

 ;

the rows and columns of this matrix are labelled by the states 00, 01, 10, and
11 of the new Markov chain, in this order. The stationary probabilities for this
4× 4 matrix are(

π00π10

π01 + π10
,

π01π10

π01 + π10
,

π01π10

π01 + π10
,

π01π11

π01 + π10

)
.

Now, assuming that the observations are generated from a Markov chain with
transition probabilities πi,j , we obtain (cf. (5))

E ln

(
1

2

N00!N01!N10!N11!

(N0∗ + 1)!(N1∗ + 1)!

)
= E

(
N00 lnN00 −N00 +N01 lnN01 −N01

+N10 lnN10 −N10 +N11 lnN11 −N11

− (N00 +N01 + 1) ln(N00 +N01 + 1)− (N00 +N01 + 1)

− (N10 +N11 + 1) ln(N10 +N11 + 1)− (N10 +N11 + 1)
)
+O(N1/2)

= E
(
N00 ln

N00

N00 +N01
+N01 ln

N01

N00 +N01

+N10 ln
N10

N10 +N11
+N11 ln

N11

N10 +N11

)
+O(N1/2)

= N
π00π10

π01 + π10
lnπ00 +N

π01π10

π01 + π10
lnπ01

+N
π01π10

π01 + π10
lnπ10 +N

π01π11

π01 + π10
lnπ11 +O(N1/2)

(we are ignoring the special cases such as N00 = 0, which should be considered
separately). To find the expectation under the Bayes mixture of the Markov
model with the uniform prior on (π01, π10), we integrate∫ 1

0

∫ 1

0

(
π00π10

π01 + π10
lnπ00 +

π01π10

π01 + π10
lnπ01

+
π01π10

π01 + π10
lnπ10 +

π01π11

π01 + π10
lnπ11

)
dπ01 dπ10

=
2

3
ln 2 +

2

3
ln2 2− 1

9
π2 − 1

6
≈ −0.481. (16)

Now let us estimate the first term∫
ln
∣∣t−1(σ)

∣∣ (t∗Q)(dσ)

10



in (4). Set K := σ (this is the number of 1s), and suppose the observations are
generated from a Markov chain with given transition probabilities π01 and π10.
We then have

E
(
ln

(
N

K

))
= E

(
ln

N !

K!(N −K)!

)
= E

(
ln

(N/e)N(
K
e

)K (N−K
e

)N−K

)
+O(N1/2)

= E
(
−K ln

K

N
− (N −K) ln

(
1− K

N

))
+O(N1/2)

= −Nπ1 lnπ1 −Nπ0 lnπ0 +O(N1/2),

where π0 and π1 are the stationary probabilities

π0 :=
π10

π01 + π10
and π1 :=

π01

π01 + π10

of the Markov chain. It remains to take the integral

−
∫ 1

0

∫ 1

0

(π0 lnπ0 + π1 lnπ1) dπ01 dπ10 = −2

∫ 1

0

∫ 1

0

(π0 lnπ0) dπ01 dπ10

= −2

∫ 1

0

∫ 1

0

(
π10

π01 + π10
ln

π10

π01 + π10

)
dπ01 dπ10

= 2 ln 2− 1

12
π2 ≈ 0.564. (17)

The final term H(t∗Q) in (4) can be ignored. Indeed, using the last
expression in (5), we can bound the probability (t∗Q)({K}), for any K ∈
{1, . . . , N − 1}, by 1 from above and by 1/(2N) from below:

(t∗Q)({K}) ≥ 1

2

(N −K − 1)!0!1!(K − 1)!

(N −K − 1)!K!
=

1

2K
≥ 1

2N
(18)

(the expression after the first “≥” being the probability of the sequence consist-
ing of K 1s followed by N −K 0s). Therefore, H(t∗Q) = O(lnN). (As always,
the extreme cases K ∈ {0, N} should be considered separately.)

Combining (16) and (17), we obtain the coefficient

8

3
ln 2 +

2

3
ln2 2− 7

36
π2 − 1

6
≈ 0.083 (19)

in front of N in the asymptotic expression for epQ(UMM).
The proof shows that the asymptotic e-power is the same for the exchange-

ability lower benchmark, and a simple calculation using Stirling’s formula (see,
e.g., [32, Proposition 9.2]) shows that we also have the same asymptotic e-power
for the lower benchmark.

The proof of Proposition 5.1 contains the following relation between the
UMM e-variable and the exchangeability lower benchmark; in particular, it
shows once again that the exchangeability lower benchmark is also an e-variable.

11



Proposition 5.2. It is always true that

1 ≤ UMM

ELB
≤ 2N. (20)

Moreover, it is true that

1 ≤ UMM

ELB
≤ N (21)

unless N1 ∈ {0, N}.

Proof. Unless N1 = 0, we can improve (18) to

(t∗Q)({K}) ≥ 1

N

by considering, alongside the sequence consisting of K 1s followed by N −K 0s,
the sequence consisting of K 0s followed by N −K 1s. It remains to notice that

UMM =
ELB

(t∗Q)({N1})
.

6 Computational experiments

We will conduct two groups of experiments for the two lower benchmarks and the
UMM exchangeability e-variable. In the first group, the true data distribution
will be a specific Markov probability measure with initial probability of 1 equal
to 1/2. In this case, we define the upper benchmark as

UB :=
1

2

N00!N01!N10!N11!

(N0∗ + 1)!(N1∗ + 1)!πN0
0 πN1

1

, (22)

where π0 and π1 are the stationary probabilities under the true data-generating
distribution. Therefore, the upper benchmark is an e-variable w.r. to a specific
IID probability measure, and so it is not even an IID e-variable. Therefore, we
should not be surprised if the upper benchmark exceeds a bona fide exchange-
ability e-variable; there are two elements of cheating in interpreting the upper
benchmark as measure of evidence against the null hypothesis of exchangeabil-
ity: first, it tests IID rather than exchangeability, and second, it tests only one
individual IID measure.

Our results for specific Markov alternatives are given in Fig. 1. This figure
contains boxplots for 105 simulations of four values: the exchangeability lower
benchmark ELB (given by (7)), the lower benchmark LB (given by (6)), the
upper benchmark UB (given by (22)), and the UMM exchangeability e-variable
UMM (given by Algorithm 1). Only two of these, ELB and UMM, are bona
fide exchangeability e-values. It is interesting that UMM is often even higher
than the upper benchmark, as in the right panel of Fig. 1. The horizon N and
the transition probabilities for the two panels are given in the caption. In both
cases, the alternative probability measure is Markov.

12



N π01 = π10 ELB UMM UMM− ELB upper bound

20 0.1 −0.116 1.226 1.342 1.301
400 0.4 0.084 2.427 2.343 2.602

Table 1: Comparison between the decimal logarithms of the exchangeability
lower benchmark and the UMM e-variable; the upper bound for the difference
is log10 N , as per (21).

According to Proposition 5.2, the UMM e-value cannot differ from the ex-
changeability lower benchmark by much. Table 1 gives the means of their deci-
mal logarithms (over the same 105 simulations as in Fig. 1) and the upper bound
(21) for the difference between them. The bars stand for the empirical averages
(over all 105 replications). The upper bound (21) is violated in the first row
because π01 = π10 and N are so small, which often leads to N1 ∈ {0, N}; of
course, the upper bound (20) (whose value is approximately 1.602 in this case)
still holds.

The second group of experiments involves generating the binary observa-
tions from the UMM alternative (which is not Markov any more). The explicit
formula for this alternative is given in (5), but it is easier to generate π01 and
π10 from the uniform distribution on [0, 1]2 and then generate the observations
from the Markov chain with these parameters. Figure 2 shows results for this
case, with the same four values as in Fig. 1; in the expression (22) for the upper
benchmark, we now set π01 := π10 := 1/2. It is striking how spread out the
distributions for the three benchmarks and the UMM e-variable are. They are
also skewed, with the mean very different from the median. Now the lack of
validity for the upper benchmark is very obvious: it takes much larger values,
and we will ignore it from now on.

Table 2 gives corresponding figures. Now the bars stand for the empirical
averages over K replications (for three different values of K), N is the horizon,
and “as.” is the common theoretical asymptotic value for the UMM e-variable

ELB LB UB UMM

10 1

1

10

102

103

104

ELB LB UB UMM

10 2

10 1

1

10

102

103

104

105

Figure 1: The four e-values and related quantities, as described in text. Left
panel: N = 20 and π01 = π10 = 0.1. Right panel: N = 400 and π01 = π10 = 0.4.
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N K ELB LB UMM as. UMM quantiles

103 103 31.05 32.56 34.02 36.02 [−1.01, 2.56, 14.21, 49.04, 134.22]
104 104 356.8 358.8 360.8 360.2 [0.1, 35.7, 170.0, 509.8, 1378.3]
105 105 3570 3573 3575 3602 [12, 366, 1684, 5033, 13632]

Table 2: Some figures for the decimal logarithms of the two lower benchmarks
and the UMM e-variable; “as.” stands for the asymptotic expression The UMM
quantiles are for 5%, 25% (first quartile), 50% (median), 75% (third quartile),
and 95%.

N K ELB UMM UMM− ELB upper bound

103 103 31.05 34.02 2.968 3
104 104 356.8 360.8 3.964 4
105 105 3570 3575 4.966 5

Table 3: Analogue of Table 1 in the situation of Fig. 2.

and exchangeability lower benchmark obtained from (19) by dividing by ln 10
(to convert natural logarithms to decimal ones) and multiplying by the sample
size N .

Table 3, analogous to Table 1, gives the average differences between the
UMM e-variable and exchangeability lower benchmark on the log10 scale, to-
gether with the upper bound given by (21). The upper bound is surprisingly
tight.

7 Conclusion

In this paper the algorithm for computing the UMM e-variable was fully devel-
oped only in the binary case. A natural next step would be to extend it to any
finite observation space Z. (A big chunk of Sect. 4, following [31, Sect. 8.6],

ELB LB UB UMM

1

1050

10100

ELB LB UB UMM
1

105000

1010000

Figure 2: Two exchangeability e-values and two approximations for the UMM
alternative. Left panel: N = K = 103. Right panel: N = K = 105.
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presented the combinatorics for an arbitrary finite observation space Z.) It is
interesting what the computational complexity of such an extension of Algo-
rithm 1 will be in general as function of N and |Z|.

The topic of this paper has been testing the exchangeability model in the
batch mode using Markov alternatives. There are many other interesting null
hypotheses among Kolmogorov compression models, and there are many in-
teresting alternatives. For example, in [32, Chap. 9] we discussed, alongside
Markov alternatives, detecting changepoints. Our discussion was in the on-
line mode, but for changepoint detection the batch mode is not less important
[32, Remark 8.19]; e.g., its role has increased in bioinformatics (including DNA
analysis). Using e-values in changepoint detection is particularly convenient
when multiple hypothesis testing is involved (as it often is in batch changepoint
detection). Some extensions will be discussed in Appendixes B–C, including
changepoint detection in Appendix C.
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A Algorithmic theory of randomness

In the main part of the paper we avoided using computability theory that plays
such an important role in Kolmogorov’s original approach, which is the topic
of this appendix. Kolmogorov’s complexity models were introduced, in the
most complete form, in what appears to be Kolmogorov’s last talk, given on 14
October 1982 at what later became known as the Kolmogorov seminar; see [23,
note 12], containing Shen’s notes taken during the talk, and [29, Sect. 4]. The
Kolmogorov seminar at Moscow State University was opened by Kolmogorov
on 28 October 1981, and Kolmogorov gave two talks in it, on 26 November 1981
and 14 October 1982 [23, note 12]; the two talks were conflated in my paper
[29, Sect. 4].

All results listed in this appendix are either well known or immediately follow
from well-known results.

Mathematical results

Let X be an infinitely countable set with a fixed bijection f : X → {1, 2, . . . }
between X and the natural numbers. When talking about the computability of
functions involving elements X, we mean the computability of those functions
with x ∈ X replaced by their “codes” f(x). An example (of primary interest
to us in this paper) is the set of all finite binary sequences with a computable
bijection f . Alternatively, X can be any aggregate of constructive objects in the
sense of [27, Sect. 1.0.6]; in general, we will regard elements of X as constructive
objects.

Let us use the notation C(x) for the Kolmogorov complexity of x, C(x | y)
for the conditional Kolmogorov complexity of x given y, K(x) for the prefix
complexity of x, and K(x | y) for the conditional prefix complexity of x given y.
Here x and y are constructive objects, such as elements of X or finite subsets
of X.

Kolmogorov’s definition of randomness deficiency of an element x of a finite
set A ⊂ X is

dCA(x) := log|A| − C(x | A) (23)

[10, Sect. 2.3], where log stands for binary logarithm. Informally, x is random in
A if dCA(x) is small. (And Kolmogorov called x ∆-random in A if dCA(x) ≤ ∆.)

Martin-Löf [15] showed that Kolmogorov’s definition (23) can be stated in
terms of p-values. Let A be a finite subset of X and UA be the uniform proba-
bility measure on A. A function f : A → [0, 1] is a p-variable if

∀ϵ > 0 : UA(f ≤ ϵ) ≤ ϵ.

A family P of functions PA : A → [0, 1], A ranging over the finite subsets of X,
is a p-test if

� the function (A, x) 7→ PA(x) is upper semicomputable, i.e., there is an
algorithm that eventually stops on input (A, x, ϵ), where ϵ is a rational
number, if and only if PA(x) < ϵ, and
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� for each finite A ⊂ X, PA is a p-variable.

The values taken by p-variables are p-values.

Lemma A.1. There exists a universal p-test P̃ , in the sense that for any p-test
P there exists a positive constant c such that P̃ ≤ cP .

The proof of Lemma A.1 is standard (cf., e.g., [25, Theorem 39]). Fix a
universal p-test P̃ . The universal p-test is unique to within a constant factor,
and it is customary in the algorithmic theory of randomness to disregard such
differences, which we will also do in this appendix.

Remark A.2. The usual definitions in the algorithmic theory of randomness
are given in terms of − logP , but for simplicity let us discard the logarithm,
following [35].

Now we can state Martin-Löf’s result expressing Kolmogorov’s deficiency of
randomness via the universal p-test. In this appendix log always stands for base
2 logarithm.

Proposition A.3. There exists a constant c > 0 such that, for all A and x,∣∣∣dCA(x) + log P̃A(x)
∣∣∣ ≤ c. (24)

Proof. Martin-Löf states and proves a slightly less general result in [15, Sect. II,
Theorem on p. 607] (see also [15, Sect. V, Theorem on p. 616]), but his argument
is general. Since, for each finite set A ⊂ X and each n ∈ {0, 1, . . . }, we have

|{x ∈ A | C(x | A) ≤ n}| ≤ 2n+1,

we will also have

UA ({x ∈ A | log|A| − C(x | A) ≥ n}) ≤ 2−n+2,

which implies the part
dCA(x) + log P̃A(x) ≤ c

of (24).
To prove the other part of (24), i.e.,

C(x | A) ≤ log|A|+ log P̃A(x) + c,

it suffices to establish that, for some c (perhaps a different one),

∀(A, x) :
∣∣∣{x ∈ A | log|A|+ log P̃A(x) ≤ n

}∣∣∣ ≤ 2−n+c.

The last inequality follows immediately from the definition of a p-test (with
c := 0).
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Prefix complexity K has important technical advantages over C, and so a
natural modification of (23) is

dKA (x) := log|A| −K(x | A). (25)

Analogously to expressing (23) in terms of p-values, we can express (25) in terms
of e-values.

A function f : A → [0,∞) on a finite set A ⊂ X is an e-variable if∫
f dUA ≤ 1.

A family E of functions EA : A → [0, 1], A ranging over the finite subsets of X,
is an e-test if

� the function (A, x) 7→ EA(x) is lower semicomputable, i.e., there is an
algorithm that eventually stops on input (A, x, t), where t is a rational
number, if and only if EA(x) > t, and

� for each finite A ⊂ X, EA is an e-variable.

Lemma A.4. There exists a universal e-test Ẽ, in the sense that for any e-test
E there exists a positive constant c such that Ẽ ≥ E/c.

The proof of Lemma A.4 is again standard (but [25, Theorem 47] is now
more relevant). Fix a universal e-test Ẽ. It is clear that the universal e-test is
unique to within a constant factor.

Notice the difference between the universal tests in Lemma A.1 and
Lemma A.4: whereas in the former “universal” means “smallest” (to within a
constant factor), in the latter “universal” means “largest”. The following result
expresses the prefix version (25) of deficiency of randomness via the universal
e-test.

Proposition A.5. There exists a constant c > 0 such that, for all A and x,∣∣∣dKA (x)− log ẼA(x)
∣∣∣ ≤ c. (26)

Proposition A.5 will follow from two other propositions (Propositions A.7
and A.8 below), which, despite their simplicity (especially Proposition A.8), are
of great independent interest.

A function f : A → [0, 1] on a finite set A ⊂ X is a subprobability measure
(or semimeasure [25, Sect. 4.1]) if∑

x∈A

f(x) ≤ 1.

A family m of functions mA : A → [0, 1], A ranging over the finite subsets of
X, is a lower semicomputable subprobability measure if

� the function (A, x) 7→ mA(x) is lower semicomputable, and
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� for each finite A ⊂ X, mA is a subprobability measure.

Lemma A.6. There exists a universal lower semicomputable subprobability
measure m̃, in the sense that for any lower semicomputable subprobability mea-
sure m there exists a positive constant c such that m̃ ≥ m/c.

For a proof of, essentially, Lemma A.6, see the proof of [25, Theorem 47].
Let us abbreviate “universal lower semicomputable subprobability measure” to
universal measure.

Proposition A.7. There exists a constant c > 0 such that, for all A and x,

|K(x | A) + log m̃A(x)| ≤ c.

Proof. Follow [25, Sect. 4.5].

Proposition A.8. There exists a constant c > 0 such that, for all A and x,

1

c
≤ m̃A(x)|A|

ẼA(x)
≤ c. (27)

Proof. It suffices to notice that m̃A(x)|A| is an e-test and that ẼA(x)/|A| is a
lower semicomputable subprobability measure.

The interpretation of (27) is that the universal e-test Ẽ is a likelihood ratio:
we divide the universal measure m̃ (“universal alternative hypothesis”) by the
null uniform probability measure 1/|A|.

Now we can easily prove Proposition A.5.

Proof of Proposition A.5. Combining the previous propositions, we obtain∣∣∣dKA (x)− log ẼA(x)
∣∣∣ = ∣∣∣log|A| −K(x | A)− log ẼA(x)

∣∣∣
≤ |log|A|+ log m̃A(x)− log(m̃A(x)|A|)|+ c = c,

(28)

i.e., (26). The first equality in (28) just uses the definition of dKA (x), and the
inequality “≤” is obtained by applying Proposition A.7 toK(x | A) and applying
Proposition A.8 to ẼA(x).

Both complexities C and K and randomness deficiencies dC and dK are close
to each other.

Proposition A.9. There is a constant c > 0 such that, for all finite A ⊂ X
and all x ∈ A,

C(x | A)− c ≤ K(x | A) ≤ C(x | A) + 2 logC(x | A) + c (29)

and
dKA (x)− c ≤ dCA(x) ≤ dKA (x) + 2 log dKA (x) + c. (30)

Proof. See [25, Theorem 65] for inequalities stronger than (29). For (30), follow
the proof of [20, Proposition 1].
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Discussion

Kolmogorov’s original definition of randomness deficiency of an element of a
finite set is (23). It can be interpreted as the universal p-value on the logarith-
mic scale (Proposition A.3). A natural modification of Kolmogorov’s definition
is (25), given in terms of prefix complexity, and it can be interpreted as the
universal e-value on the logarithmic scale (Proposition A.5).

The simplest context in which these definitions can be used is that of com-
plexity models, in the terminology of [29, 33]. A complexity model is a com-
putable partition of the sample space, and the implicit statement about the
observed data sequence x is that it is random in the sense of (23) (or (25),
which is close by Proposition A.9) in the block A ∋ x of the partition. Let
me give several examples of such models, those that are most relevant in the
context of this paper. The sample space in all these examples will be {0, 1}∗.

� The main complexity model of interest to Kolmogorov [8, 9] was that of
exchangeability, where the binary sequences {0, 1}∗ are divided into the
blocks of sequences of the same length and with the same number of 1s.
Stripping this complexity model of the algorithmic theory of randomness,
we obtain the exchangeability compression model introduced in the main
part of the paper.

� Another complexity model [9] is the Markov model, in which the blocks
consist of the binary sequences with the identical first element and the
same number of substrings 00, 01, 10, and 11. In the terminology of [32,
Sect. 11.3.4], the exchangeability model is more specific than the Markov
model.

� A further generalization of the exchangeability complexity model is the
second order Markov model (suggested in Kolmogorov’s 1982 seminar talk
[29]), in which the blocks consist of the binary sequences with the identical
first and second elements and the same number of substrings 000, 001, 010,
011, 100, 101, 110, and 111.

� A model not considered by Kolmogorov is the changepoint model (ex-
changeability with a changepoint), in which the blocks are indexed by
(N, τ,K0,K1), where N ∈ {2, 3, . . . } (the horizon), τ ∈ {1, . . . , N − 1}
(the changepoint), K0 ∈ {0, . . . , τ}, and K1 ∈ {0, . . . , N − τ}, and the
block (N, τ,K0,K1) consists of all binary sequences of length N with K0

1s among their first τ elements and K1 1s among their last N−τ elements.

Other complexity models introduced by Kolmogorov were Gaussian and
Poisson (in his 1982 seminar talk [23, note 12]; see also [1, 2] and [29, Sect. 4]).
A complexity model formalizing the property of being IID rather than exchange-
ability was introduced in work [28] done under Kolmogorov’s supervision.
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Stochastic sequences

Kolmogorov’s 1981 seminar talk was devoted to what he called stochastic se-
quences, which can be interpreted as an overarching structure over complexity
models. Let us say that a binary data sequence x ∈ X is (α, β)-stochastic if
there is a finite set A ⊂ X such that C(A) ≤ α and dCA(x) ≤ β. And let
us say that x ∈ X is ∆-random w.r. to a Kolmogorov complexity model if
dCA(x) ≤ ∆, where A is the block of the model containing x. Data sequences
that are modelled using Kolmogorov complexity models are stochastic; e.g., for
some constant c:

� if a data sequence of length N is ∆-exchangeable (i.e., ∆-random w.r. to
the exchangeability model), it is (logN + c,∆+ c)-stochastic;

� if a data sequence of length N is ∆-Markov (i.e., ∆-random w.r. to the
Markov model), it is (2 logN + c,∆+ c)-stochastic;

� if a data sequence of length N is ∆-Markov of second order, it is (4 logN+
c,∆+ c)-stochastic;

� if a data sequence of length N is ∆-random w.r. to the IID model intro-
duced in [28], it is (12 logN + c,∆+ c)-stochastic;

� if a data sequence of length N is ∆-exchangeable with one change point
(i.e., ∆-random w.r. to the changepoint model), it is (2 logN + c,∆+ c)-
stochastic.

B Quasi-universal e-variables

In this paper we are interested, at least implicitly, in the universal e-test Ẽ in-
troduced in Lemma A.4. It is a fundamental object in that its components ẼA

are the largest e-variables; in this sense they are the most powerful e-variables.
By Proposition A.8, ẼA is the likelihood ratio of the universal measure to the
null hypothesis UA. In the main part of the paper we discussed alternative
hypotheses, and the universal measure can be regarded as the universal alter-
native.

The way the universal measure is constructed in the algorithmic theory
of randomness is by averaging over all subprobability measures that are com-
putable in a generalized sense (see, e.g., [25, Theorem 47], the alternative proof).

The algorithmic theory of randomness, however, provides only an ideal pic-
ture. It can serve as a model for more practical approaches, but it is not practical
itself. The two most conspicuous reasons are that:

� the basic quantities used in the algorithmic theory of randomness, such as
complexity or randomness deficiency, are not computable (they are only
computable in a generalized sense, let alone efficiently computable); in
particular, the universal alternative is not computable;
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� these basic quantities are only defined to within a constant (additive or
multiplicative).

What we did in this paper can, however, be regarded as a computable approx-
imation to the ideal picture. The idea (which is an old one) is to replace the
universal alternative by a Bayesian average of a statistical model that is signifi-
cantly richer than the null hypothesis. In particular, the UMM exchangeability
e-variable discussed in the main part of this paper can be regarded as a practical
approximation to Ẽ.

The justification that we had for the UMM e-variable is less convincing than
the justification for its ideal counterpart Ẽ: it is the frequentist one given by
Lemma 3.1 and assuming that the observed data sequence is generated by the
UMM alternative. Its advantage, however, is that this justification does not
involve an arbitrary constant factor.

It would be more in the spirit of the algorithmic theory of randomness to use
a different principle for choosing the alternative hypothesis: instead of choosing
an alternative probability measure likely to generate the data, we could choose
an alternative probability measure likely to lead to a high likelihood ratio of the
alternative to the null.

The general scheme of testing exemplified by this paper is that we test a Kol-
mogorov compression model as null hypothesis, and have a batch compression
model with a more detailed summarising statistic as alternative. This paper has
the exchangeability model as the null and a mixture of the first-order Markov
model as the alternative. We can imagine lots of other testing problems of this
kind:

� The exchangeability model as the null, and the uniform mixture of the
second-order Markov model as the alternative.

� The exchangeability model as the null, and a mixture of the uniform mix-
tures of the kth order Markov models as the alternative; the weights wk

for those should sum to 1,
∑

k wk = 1, and tend to 0 as slowly as possible
as k → ∞.

� The first-order Markov model as the null, and the second-order Markov
model as the alternative.

� The exchangeability model as the null and the changepoint model as al-
ternative.

� A changepoint at a postulated time τ as the null, and a changepoint at
a different time as alternative. (In order to obtain confidence regions for
the changepoint.)

We can call them instances of quasi-universal testing.
In information theory and statistics, quasi-universal prediction and coding

(similar to quasi-universal testing discussed here) was promoted by Rissanen;
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see, e.g., [22] and Grünwald’s review [4]. Rissanen’s suggestion for the weights
wk, k = 1, 2, . . . , that sum to 1 and tend to 0 slowly was

wk :=
1

ck log k log log k log log log k . . .
,

where the denominator includes all terms that exceed 1 and c ≈ 0.865 is the
normalizing constant [22, Appendix A]. The word “universal”, however, is some-
times used in a more limited sense in information theory and statistics: it may
be universality, in some sense, for a given statistical model, without attempting
to make the statistical model wider.

Kolmogorov’s ideal picture is based on computability, but when discussing
practical approximations it may be useful to replace computability by express-
ibility in a given language. The idea of using expressibility in logic rather than
computability is much older than the algorithmic theory of randomness (see,
e.g., [16, Sect. 1]) and goes back to Wald [39]. This idea has led to higher-level
algorithmic randomness, as in [17] and, e.g., [7].

In this paper we used the uniform prior on the Markov statistical model
to obtain our alternative hypothesis. Another natural choice is Jeffreys priors
[5]. However, in our current context they do not have any obvious advan-
tages. (Among their advantages in other contexts are their invariance w.r. to
smooth reparametrizations and attaining minimax optimality in some cases [4,
Sect. 8.2].) They do not always exist and many Bayesian statisticians find them
objectionable (see, e.g., [34]). Using the uniform prior in this paper leads to
simple analytical expressions and efficient calculations. Similar problems (using
the Markov model as alternative when testing exchangeability) are considered
in [21] and [32, Sect. 9.2.7], which use priors that are built on top of Jeffreys
priors but are not Jeffreys priors themselves.

The idea of quasi-universal testing is closely related to Lindley’s “Cromwell’s
rule” (see, e.g., [14, Sect. 6.8]). A possible interpretation of Cromwell’s rule in
our context is that, when designing a suitable e-variable, we should think of all
kinds of alternative models (say, Markov models of all orders), and then mix all
of them. Cromwell’s rule as stated by Lindley is very general and encompasses
two aspects: our statistical models should be as wide as possible, and our priors
should be diffuse (at least non-zero).

C Changepoint models

In this appendix we will discuss in greater detail the changepoint compression
models mentioned in the previous appendixes. But first we discuss a changepoint
alternative hypothesis when testing exchangeability.

In the ideal picture, we just use Ẽ of Lemma A.4 as e-test, but in practice
we could use

Q({(z1, . . . , zN )}) := 1

N − 1

N−1∑
n=1

∫ 1

0

∫ 1

0

πz1+···+zn
0 (1− π0)

n−z1−···−zn (31)
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π
zn+1+···+zN
1 (1− π1)

N−n−zn+1−···−zN dπ0 dπ1 (32)

=
1

N − 1

N−1∑
n=1

B(z1 + · · ·+ zn + 1, n− z1 − · · · − zn + 1)

B(zn+1 + · · ·+ zN + 1, N − n− zn+1 − · · · − zN + 1)

=
1

N − 1

N−1∑
n=1

(z1 + · · ·+ zn)!(n− z1 − · · · − zn)!(N − n+ 1)!

(zn+1 + · · ·+ zN )!(N − n− zn+1 − · · · − zN )!(n+ 1)!
(33)

as quasi-universal alternative probability measure. The expression inside the
double integral in (31)–(32) is the likelihood of the observed data sequence
when the probability of 1 is π0 before and including time n ∈ {1, . . . , N} (the
changepoint) and is π1 strictly after time n. We average this likelihood over the
uniform distribution for (π0, π1) and then over the uniform distribution for the
changepoint n.

The alternative Markov kernel corresponding to (33) is

QN1({(z1, . . . , zN )}) = Q({(z1, . . . , zN )})∑
z′
1,...,z

′
N :z′

1+···+z′
N=N1

Q({(z′1, . . . , z′N )})
,

where N1 := z1+· · ·+zN is interpreted as the value of the summarising statistic.
Finally, we can compute the quasi-universal e-value as

E(z1, . . . , zN ) :=

(
N

N1

)
QN1

({(z1, . . . , zN )}).

We do not discuss efficient ways of computing this e-value in this version of the
paper.

Confidence regions

Now suppose we believe that there is at most one changepoint in a binary
data sequence z1, . . . , zN and would like to pinpoint its location. To obtain a
confidence region, we need different null hypotheses.

The Kolmogorov compression model with the changepoint τ ∈ {1, . . . , N−1}
has

tτ (z1, . . . , zN ) :=

(
τ∑

n=1

zn,

N∑
n=τ+1

zn

)
(34)

as its summarising statistic. Examples of probability measures that agree with
this KCM are

P ({(z1, . . . , zN )}) :=

πz1+···+zτ
0 (1− π0)

τ−z1−···−zτπ
zτ+1+···+zN
1 (1− π1)

N−τ−zτ+1−···−zN

for π0, π1 ∈ [0, 1]. Of course, these are not all probability measures that agree
with (34); those consist of all convex mixtures of the uniform probability mea-
sures on t−1

τ (k0, k1), where (k0, k1) ∈ {0, . . . , τ} × {0, . . . , N − τ}.
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As alternative probability measure we can take (33) or, which is slightly
more natural, its modification

Qτ ({(z1, . . . , zN )}) := 1

N − 2∑
n∈{1,...,N−1}\{τ}

(z1 + · · ·+ zn)!(n− z1 − · · · − zn)!(N − n+ 1)!

(zn+1 + · · ·+ zN )!(N − n− zn+1 − · · · − zN )!(n+ 1)!

that only considers changepoint locations different from τ , the one we are test-
ing. The alternative Markov kernel becomes

Qτ,K0,K1({(z1, . . . , zN )}) =
Qτ ({(z1, . . . , zN )})∑

z′
1,...,z

′
N :z′

1+···+z′
τ=K0,z′

τ+1+···+z′
N=K1

Qτ ({(z′1, . . . , z′N )})
,

where (K0,K1) := (z1+ · · ·+zτ , zτ+1+ · · ·+zN ) is the value of the summarising
statistic. Finally, we can compute the quasi-universal e-value as

Eτ (z1, . . . , zN ) :=

(
τ

K0

)(
N − τ

K1

)
Qτ,K0,K1({(z1, . . . , zN )}). (35)

Once we have the e-values (35), we have the e-confidence regions for the
changepoint τ : at a significance level α, the e-confidence region is {τ | Eτ ≤
1/α} (see [37]). A natural direction of further research is to find a computa-
tionally efficient version of the e-confidence regions based on (35).

D Neyman structure

In this appendix we assume, as usual in this paper, that the sample space is
finite. (In this case every function on the sample space is bounded, and we do
not have to discuss completeness and bounded completeness separately; in fact,
the most relevant notion of completeness for e-testing without this restriction
would have been “semi-bounded completeness” only involving functions that
are bounded below.)

Let us say that a statistic (i.e., function on the sample space) E is a similar
(or precise) e-variable for a statistical model {Pθ | θ ∈ Θ} if

∫
E dPθ = 1 for all

θ ∈ Θ; this is an analogue for e-testing of Neyman and Pearson’s [19, Sects IV(a)
and V(a)] notion of a similar test. And we say that a statistic E has Neyman
structure w.r. to a sufficient statistic T if Eθ(E | T ) = 1 Pθ-a.s. for all θ ∈ Θ.
This is analogous to the standard notion of Neyman structure (see, e.g., [13,
Sect. 4.3]).

A statistic T is complete if, for any function f on its range,(
Eθ(f(T )) = 0 for all θ ∈ Θ

)
=⇒

(
f(T ) = 0 Pθ-a.s. for all θ ∈ Θ

)
.

The following is an analogue of Theorem 4.3.2 in [13].
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Proposition D.1. Let T be a sufficient statistic for a statistical model {Pθ |
θ ∈ Θ}. If T is complete, a statistic is a similar e-variable if and only if it has
Neyman structure w.r. to T . The condition that T be complete is both sufficient
and necessary.

Proof. Suppose T is complete. It is clear that a statistic that has Neyman
structure is a similar e-variable. Now suppose E is a similar e-variable. Set
f(T ) := Eθ(E | T ); f can be chosen independent of θ since T is sufficient. Since
Eθ(f(T ) − 1) = 0 for all θ, f(T ) = 1 Pθ-a.s. for all θ, and so E has Neyman
structure.

Now suppose that T is not complete. Choose a [−1,∞)-valued function f
such that Eθ(f(T )) = 0 for all θ ∈ Θ but f(T ) ̸= 0 with a positive Pθ-probability
for some θ ∈ Θ. Then 1+f(T ) is a similar e-variable that does not have Neyman
structure w.r. to T .

For our purposes the following one-sided variation of having Neyman struc-
ture is more useful (although it is much less widely applicable). An e-variable
w.r. to a statistical model {Pθ | θ ∈ Θ} is a nonnegative random variable E
such that

∫
E dPθ ≤ 1 for all θ ∈ Θ. It has one-sided Neyman structure w.r. to

a sufficient statistic T if Eθ(E | T ) ≤ 1 Pθ-a.s. for all θ ∈ Θ.
Let us say that a statistic T is supercomplete if, for any function f on its

range,(
Eθ(f(T )) ≤ 0 for all θ ∈ Θ

)
=⇒

(
f(T ) ≤ 0 Pθ-a.s. for all θ ∈ Θ

)
. (36)

(It is clear that this property is stronger than completeness.) Now we have the
following analogue of Proposition D.1.

Proposition D.2. Let T be a sufficient statistic for a statistical model {Pθ |
θ ∈ Θ}. If T is supercomplete, a nonnegative random variable is an e-variable
if and only if it has one-sided Neyman structure w.r. to T . The condition that
T be supercomplete is both sufficient and necessary.

Proof. Suppose T is supercomplete. It is clear that a nonnegative variable
that has one-sided Neyman structure is an e-variable. Now suppose E is an
e-variable. Set f(T ) := Eθ(E | T ). Since Eθ(f(T ) − 1) ≤ 0 for all θ, f(T ) ≤ 1
Pθ-a.s. for all θ, and so E has one-sided Neyman structure.

Now suppose that T is not supercomplete. Choose a [−1,∞)-valued function
f such that Eθ(f(T )) ≤ 0 for all θ ∈ Θ but f(T ) > 0 with a positive Pθ-
probability for some θ ∈ Θ. Then 1 + f(T ) is an e-variable that does not have
Neyman structure w.r. to T .

The following two examples show that the notion of supercompleteness is
limited albeit not vacuous.

Example D.3 (exchangeability). The summarising statistic tE of the exchange-
ability compression model (we can set tE to the number of 1s in the data se-
quence) is supercomplete w.r. to the exchangeability statistical model (consist-
ing of all exchangeable probability measures). This is because for each summary
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k there exists an exchangeable probability measure concentrated on t−1
E (k).

(And it clear that this argument is applicable to any batch compression model
and the family of all probability measures that agree with it.)

Example D.4 (IID). On the other hand, tE is not supercomplete w.r. to the
Bernoulli statistical model (Bθ | θ ∈ (0, 1)) (where Bθ is the probability measure
on {0, 1} satisfying Bθ({1}) = θ). The standard argument for completeness as
given in [13, Example 4.3.1] now fails. A function f satisfying the first inequality
in (36) can be written as

N∑
k=0

f(k)

(
N

k

)
ρk ≤ 0, for all ρ ∈ (0,∞), (37)

and under the supercompleteness we would have concluded that f ≤ 0. But
on the left-hand side of (37) we can have any polynomial of degree N , and a
polynomial can be nonpositive without all its coefficients being nonpositive. An
example is −(ρ− 1)2, which corresponds to the function

f(k) :=


−1 if k = 0
2
N if k = 1

− 2
N(N−1) if k = 2

0 otherwise.
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