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Abstract

This note states a simple property of optimality of the Bayes–Kelly algorithm
for conformal testing and poses a related open problem.
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1 Introduction

This note is motivated by Grünwald et al.’s RSS discussion paper [1]. The main
result of that paper (Theorem 1) is elegant and satisfying, but in this note I
will concentrate on one of its limitations. The two modest contributions of my
comment is to state a very simple property of optimality of the Bayes–Kelly
algorithm [4, Sect. 9.2.1] in conformal testing and to pose an open problem.
I will try to make the conformal testing part formally self-contained, but for
further intuition and details, see [4].

A test martingale S in a probability space (Ω,F , P ) equipped with a filtra-
tion (Fn)

∞
n=0 is a nonnegative martingale starting from 1. In other words, S =

(S0, S1, . . . ), each Sn is required to be Fn-measurable, EP (Sn | Fn−1) = Sn−1

for all n ≥ 1, Sn are required to be nonnegative, and S0 = 1. We can interpret
logSn as the amount of evidence (measured in bits) found at time n against P
as null hypothesis. One-step counterparts of test martingales are “e-variables”,
to be introduced shortly.

2 Grünwald et al.’s result with discussion

The following is Grünwald et al.’s [1] main result (in its basic form, namely
Theorem 1 in [1, Sect. 2]). The notation used in it will be explained after the
statement.

Theorem 2.1 (Grünwald et al.). Suppose Q is a probability distribution with
full support and with density q, and assume

inf
w∈W

D(Q∥Pw) < ∞. (1)

Then there exists a (potentially sub-) distribution P with density p such that

E∗ := q/p (2)

is an e-variable. Moreover, E∗ satisfies, essentially uniquely,

sup
E∈E

EQ(logE) = EQ(logE
∗) = inf

W∈W
D(Q∥PW ) = D(Q∥P ). (3)

If the inf is attained, so that D(Q∥PW∗) = D(Q∥P ), then P = PW∗ .

Theorem 2.1 is about a statistical model (Pθ | θ ∈ Θ) such that each Pθ is
absolutely continuous w.r. to some underlying measure µ. This statistical model
plays the role of our null hypothesis, while Q plays the role of the alternative
hypothesis. The notation D(Q∥P ) refers to the Kullback–Leibler divergence
between Q and P . The parameter space Θ is equipped with a σ-algebra, W
stands for the set of all probability measures on Θ, and E stands for the set of
all e-variables, i.e., nonnegative random variables E satisfying EPθ

(E) ≤ 1 for
all θ ∈ Θ. For each W ∈ W, PW :=

∫
PθW (dθ) is the mixture of Pθ w.r. to W .

“Essentially uniquely” is defined in a natural way.
The first equality in (3) can be interpreted as saying that E∗ is the optimal

e-variable under Q.
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2.1 Limitation

An important limitation of Theorem 2.1, as I see it, is the condition (1). This
condition is stated in exactly this way only in Grünwald et al.’s Theorem 1
in its basic form of [1, Sect. 2], but analogous conditions are present in all
generalizations given in [1].

To see how restrictive (1) is, consider, following [2] and [4, Chap. 9], the
case of coin tossing. Formally, the null hypothesis is (Pθ | θ ∈ [0, 1]), where
Pθ = B∞

θ and Bθ is the probability measure on {0, 1} satisfying Bθ({1}) = θ.
The condition (1) then means that Q should be absolutely continuous w.r. to
an exchangeable probability measure on {0, 1}∞. This condition is violated for
interesting Q, such as a Markov Q outside the family (Pθ | θ ∈ [0, 1]). The
main alternative hypothesis used in [2] is a Jeffreys-type mixture of the Markov
measures, and then (1) is also violated. It is difficult to think of natural cases
where (1) would be satisfied.

2.2 An objection

A possible objection to the argument of Sect. 2.1 is that infinite sequences are
irrelevant in real life, where we only observe finite sequences. If instead of the
sample space {0, 1}∞ we consider the sample space {0, 1}n for a finite (even if
very large) n, the condition (1) will be satisfied. Isn’t it all that matters?

The difficulty with this solution is that the e-variables E∗
n obtained in this

way by using Theorem 2.1 do not have to cohere with each other for different n;
for example, they do not have to form a test martingale, or a test supermartin-
gale, or an e-process. Optional continuation and stopping become big problems
for E∗

n, and logE∗
n are no longer jointly valid as the amount of evidence found

against the null hypothesis at time n.
To summarise, yes, we can truncate the sequential process of observing the

bits z1, z2, · · · ∈ {0, 1}, but it matters where we truncate it. On the other hand, if
we build an e-variable E∗ : {0, 1}∞ → [0,∞] for the infinite time horizon, Lévy’s
“upward” theorem [6, Theorem 14.2] will give us a test martingale. Therefore,
the kind of infinity that we need as our time horizon is the potential infinity,
not the actual one. If we do not know the number of observations in advance
and just would like to have an online measure of evidence found against the
null hypothesis, Theorem 2.1 does not give us anything useful. Replacing E∗ :
{0, 1}∞ → [0,∞] by E∗ : {0, 1}N → [0,∞] for a very large N is also awkward
since the resulting test martingale will typically depend on N (even over the
first few steps n).

2.3 Simple solution and its limitation

It is interesting that the binary case with a given alternative hypothesis (such
as mixed Markov [2] or change-point [4, Sect. 9.2.3]) admits a simple solution:
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just replace (2) by

E∗
n :=

Q([Z1, . . . , Zn])

supθ∈[0,1] Pθ([Z1, . . . , Zn])

for each step n = 0, 1, . . . , where [z1, . . . , zn] stands for the set of all infinite
sequences in {0, 1}∞ that begin with z1, . . . , zn, and Zi are the random bits
whose realizations are the observed bits zi. This corresponds to replacing the
mean p of the densities pθ of Pθ (p is the mean if we assume that the inf is
attained according to the last statement of Theorem 2.1) by the supremum of
pθ. Then E∗

n agree with each other in the sense of forming an e-process [2,
Theorem 6].

However, the idea of replacing p in (2) by sup does not work outside narrow
parametric cases [4, Remark 9.8]. The following example is still very basic (in
machine learning the task is usually to predict the labels of complicated objects,
such as movies).

Example 2.2. Fix a finite time horizon N ≫ 1 and assume that the ob-
servations z1, . . . , zN are real numbers, zn ∈ R, so that Z1, . . . , ZN are ran-
dom variables. The null hypothesis is that of randomness: Z1, . . . , ZN are
IID. The alternative hypothesis is a continuous probability measure Q on RN

(such as a changepoint hypothesis, as in [4, Remark 9.8]). Then the likelihood
ratio of Q to the maximum likelihood over the null hypothesis is 0; indeed,
Q([z1, . . . , zN ]) = 0 and the maximum likelihood is positive, namely at least
N−N (it is exactly N−N if the N observations are all different). This is worse
than useless, as the identical 1 is a trivial test martingale.

3 Conformal testing

Our book [4, Part III] presents a general framework, which we call conformal
testing, for testing nonparametric null hypotheses (first of all the hypothesis of
randomness) in very general situations typical of machine learning. The proce-
dure does not depend on assumptions such as (1). The efficiency of conformal
testing is demonstrated in empirical studies reported in [4, Chap. 8], but theoret-
ical results about efficiency have been established only in toy binary situations
[4, Sect. 9.2]. The validity is, however, guaranteed, in that conformal testing
leads to stochastic processes that are test martingales whenever the observations
are IID.

Let me first introduce some terminology and notation. The observation space
Z is a measurable space. (In the previous section we had Z = {0, 1} and then,
in Example 2.2, Z = R.) There is an underlying probability space (Ω,F , P ) in
the background, but we rarely need it explicitly. We observe random elements
Z1, Z2, . . . of Z (formally, each Zn is a measurable mapping from Ω to Z) with
their realized values denoted by z1, z2, · · · ∈ Z.

The null hypothesis considered in this section (which we call the hypothesis
of randomness) is that the observations Z1, Z2, . . . are IID. (Generalization to
other null hypotheses is briefly discussed in Sect. 4.) The underlying probability
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space is assumed to be rich enough; in particular, a probability measure on Ω
making Z1, Z2, . . . IID is assumed to exist (conformal prediction also needs a
sequence of independent and uniformly distributed τ1, τ2, · · · ∈ [0, 1] modelling
a random number generator).

We let Z(∗) stand for the set of all bags (or multisets) *z1, . . . , zn+ consisting
of elements of Z (with n = 0 allowed); the difference between the bag *z1, . . . , zn+
and the set {z1, . . . , zn} is that the bag (while still unordered) can contain several
copies of the same element.

A conformal test martingale is determined by two components:

� A conformity measure A, which is a measurable function A : Z(∗)×Z → R.

� A betting martingale B, which is a test martingale in the probability space
([0, 1]∞,U , U) with filtration (Un)

∞
n=1, where U is the Borel σ-algebra on

[0, 1]∞, U is the uniform probability measure on ([0, 1]∞,U), and Un is the
σ-algebra generated by the first n elements of the sequences in [0, 1]∞.

Given these two components, we define the corresponding conformal test mar-
tingale as follows.

The nth conformal p-value pn is defined by

pn :=
|{i : αi < αn}|+ τn |{i : αi = αn}|

n
, (4)

where i = 1, . . . , n, the conformity scores αi are computed from zi using the
conformity measure A by

αi := A(*z1, . . . , zn+, zi), i = 1, . . . , n, (5)

and τ1, τ2, . . . are independent random variables that are distributed uniformly
on [0, 1] (modelling a random number generator). The conformal test martingale
(CTM ) S determined by A andB is the result of applying the betting martingale
B to the p-values (4):

Sn := Bn(p1, p2, . . . ), n = 0, 1, . . . .

The associated σ-algebras Fn are those generated by p1, . . . , pn (in particular,
F0 = {∅,Ω}). An equivalent definition of a CTM is that it is a test martingale
in the filtration (Fn) (this follows from, e.g., [6, Lemma A3.2]).

The property of validity for the conformal p-values is that they are indepen-
dent and uniformly distributed on [0, 1] under the null hypothesis. This implies
that a CTM is a test martingale under the null hypothesis.

Theoretical results about efficiency are established in [4, Chap. 9] only
in the binary case and for a specific conformity measure (the identical one,
A(*z1, . . . , zn+, zi) := zi). In this note we will take a slightly wider approach:
will fix a conformity measure and will then find the optimal betting martingale
for a given alternative hypothesis. Therefore, we consider a very limited kind
of optimality:

� First, we restrict ourselves to the class of conformal test martingales.

� And even within this class, we consider a fixed conformity measure.
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3.1 Full alternative hypotheses

Let Q be a probability measure on Z∞; this is our alternative hypothesis about
the distribution of Z1, Z2, . . . . It is full in the sense of fully determining the
distribution of the observations Z1, Z2, . . . ; in Sect. 3.2 we will consider an
alternative probability measure on a poorer σ-algebra. Our null hypothesis, as
before, is that Z1, Z2, . . . are IID.

The following paragraph is a description of the optimal (in the sense to be
described later) under Q CTM with a given conformity measure A. Computa-
tionally efficient (or at least more explicit) versions of this CTM will be referred
to as the Bayes–Kelly algorithm.

Consider the following Bayesian model (a statistical model plus a prior distri-
bution on the parameter space). The parameter space is Z∞, and it is equipped
with Q as prior distribution. The element Pζ of the statistical model indexed by
ζ = (z1, z2 . . . ) ∈ Z∞ is the distribution of the corresponding p-values defined
by (4) and (5) for a given ζ (we regard the random number generator τ1, τ2, . . .
used in (4) as fixed). The marginal distribution of the p-values p1, p2, . . . is the
mixture

P :=

∫
PζQ( dζ).

The relative increment Sn/Sn−1 of the betting martingale on step n is then
defined as the conditional density fn of pn given p1, . . . , pn−1 (we will choose a
natural version of the conditional density given by Lemma 3.1 below) evaluated
at the realized pn. Knowing Sn/Sn−1 defines the betting martingale, since we
know that its starting value is S0 = 1. The Bayes–Kelly CTM is determined
by A and this betting martingale.

Lemma 3.1. A conditional density of pn given p1, . . . , pn−1 exists. There is a
version fn of the conditional density that is constant over each of the intervals

[i/n, (i+ 1)/n), i = 0, . . . , n− 2,

[(n− 1)/n, 1].
(6)

Proof. For a fixed ζ ∈ Z∞, Pζ generates independent p-values p1, p2, . . . , and
each pn (defined by (4)) is distributed uniformly on an interval [n∗/n, n

∗/n] for
some n∗ ∈ {0, . . . , n− 1} and n∗ ∈ {i+ 1, . . . , n}. Namely,

n∗ = |{i ∈ {1, . . . , n} : αi < αn}|
n∗ = |{i ∈ {1, . . . , n} : αi ≤ αn}|

(7)

in the notation of (4). Let fζ
n be the density for pn under Q conditional on

knowing ζ and w.r. to the uniform probability measure on [0, 1]. This is a
piecewise constant function, which we assume taking constant values on the
intervals (6). On each of these intervals, fζ

n takes values in [0, n]. Then fn,
as the integral of fζ

n w.r. to the posterior distribution on ζ (with prior Q and
after observing p1, . . . , pn−1), exists and integrates to 1, the latter following from
Fubini’s theorem.
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Algorithm 1 Bayes–Kelly algorithm (continuous version)

1: S0 := 1
2: Σ := Z
3: for n = 1, 2 . . . :
4: Set fn to the density of the pushforward of QΣ under (4)–(5)
5: Read zn ∈ Z
6: Compute α1, . . . , αn as per (5)
7: Read τn ∈ [0, 1]
8: Compute pn as per (4)
9: Sn := Sn−1fn(pn)

10: for (z1, . . . , zn) ∈ Σ:
11: Compute α1, . . . , αn as per (5)
12: Compute n∗ and n∗ as per (7)
13: if pn /∈ [n∗/n, n

∗/n]:
14: Remove (z1, . . . , zn) from Σ

15: Update Σ := Σ× Z

In [4, Chap. 9], we spell out the details of the Bayes–Kelly algorithm in two
special (binary) cases:

� changepoint alternatives,

� Markov alternatives, following [2].

In both cases, the procedure is computationally efficient (while the computa-
tional efficiency of Algorithm 1 described below is unclear). We also prove its
general optimality properties (i.e., without the a priori restriction to conformal
testing).

Algorithm 1 is a version of the Bayes–Kelly algorithm that works for a confor-
mity measure A that is continuous under the true data-generating distribution;
in fact, it is sufficient to assume that, for all n and almost all z1, . . . , zn, the n
conformity scores (5) are all different.

Algorithm 1 maintains a set Σ of sequences (z1, . . . , zn) compatible with the
p-values p1, . . . , pn−1 observed so far; it is initialized to Σ := Z for n = 1 (line
2). The notation QΣ in line 4 stands for the conditional distribution of the first
n observations generated from Q given that they belong to Σ. For n = 1 we
have f1 := 1. For this and other n, fn is the pushforward of QΣ under the
mapping of the type Zn → [0, 1] defined in two steps: first we apply (5) to the
input (z1, . . . , zn) (ranging freely over Zn) and then we apply (4). Similarly, the
variables z1, . . . , zn in the second for loop (starting in line 10) in Algorithm 1
are local ones; they range freely over Z and do not interfere with the global
z1, . . . , zn, which are the first n observations. Finally, the α1, . . . , αn inside that
loop are local variables that are completely separate from the global variables
with the same name. In line 12 we may assume n∗ = n∗+1 (this can be violated
only with probability zero).
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It should be clear how to drop the assumption of continuity of the conformity
measure A in Algorithm 1: a sequence z1, z2, . . . leading to

kn := |{i = 1, . . . , n : αi = αn}| > 1

should have its weight multiplied by 1/kn at step n after observing pn that is
compatible with this sequence.

The optimality property of the Bayes–Kelly algorithm is akin to Grünwald
et al.’s one, namely to the first equality in (3). The next theorem will spell it
out. In its statement, SA is the class of all CTMs based on a conformity measure
A, and P (representing the null hypothesis of randomness) consists of all P∞,
P ranging over the probability measures on Z.

Theorem 3.2. Fix a conformity measure A and an alternative hypothesis Q.
At each step N , the Bayes–Kelly CTM S∗ attains the maximum of E(logSN )
among all CTMs S based on A:

sup
S∈SA

EQ(logSN ) = EQ(logS
∗
N ) = D(A∗Q∥A∗P ), (8)

where A∗Q is the pushforward of Q under the mapping (4)–(5) of generating
the p-values p1, . . . , pN , P is an arbitrary element of P, and A∗P (which is the
uniform distribution on [0, 1]N ) is defined analogously to A∗Q.

Notice the similarity between (3) and (8) (and we can also add infP∈P in
front of D(A∗Q∥A∗P ) in (8)). The property of optimality given in Theorem 3.2
is typical of Bayesian algorithms.

Proof of Theorem 3.2. The optimization problem EQ(logSN ) → max decom-
poses into the sequence of problems EQ(log(Sn/Sn−1)) → max for n = 1, . . . , N
and for given p1, . . . , pn−1. It suffices to apply [4, Lemma 9.6].

Unlike Theorem 2.1, Theorem 3.2 gives e-variables S∗
n that are coherent

in the sense of forming a test martingale. The reason for this is that using
conformal p-values reduces the massive null hypothesis of randomness to the
simple hypothesis of uniformity.

3.2 Shrunk alternative hypotheses

This subsection will be very speculative.
The Bayes–Kelley algorithm does not cover some interesting cases. The

conformity measures A can be very complex, and then the problem of designing
an optimal betting martingale becomes infeasible. It is even possible for A to
have an element of intelligence in it [4, Sect. 8.6.3]. For example, A can be based
on a deep neural network as an underlying algorithm [4, Sect. 4.3.3]. In this
case the Bayes–Kelly algorithm will be infeasible even if we fix an alternative
probability measure Q on Z∞. (And we are unlikely to have such a probability
measure Q in the first place if we are contemplating the use of such a conformity
measure A.)
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In the case of such a “quasi-intelligent” conformity measure, to find a suit-
able betting martingale B, we might consider an alternative distribution on the
p-values p1, p2, . . . (whose distribution is uniform under the null hypothesis)
rather than an alternative distribution on the observations or (which is not very
different) on the underlying probability space. Let us call a probability mea-
sure on [0, 1]∞ interpreted as alternative distribution on the p-values a shrunk
alternative (in the spirit of “filtration shrinkage”, a popular topic of research in
probability theory). The betting martingale B that is optimal in a natural sense
will then be the likelihood ratio of the shrunk alternative to the null hypothesis
of the uniform distribution on [0, 1]∞.

How do we choose the shrunk alternative Q? A natural approach is simply
to try and make it as large as possible in an attempt to approximate the uni-
versal distribution in the sense of the algorithmic theory of randomness (see,
e.g., [5, Sect. 5], which calls it “a priori semidistribution”, or [3, Appendix
A], which considers a non-sequential setting). Such a betting martingale may
be called “quasi-universal”; see [3, Appendix B] for a further discussion in a
non-sequential setting. The quasi-universal betting martingale is designed to
approximate the universal supermartingale (see, e.g., [5, Sect. 3]).

To summarise, an appealing informal choice is:

� a quasi-intelligent conformity measure;

� a quasi-universal betting martingale.

To make testing methods based on these choices computationally efficient, we
might need modifications, e.g., in the direction of inductive conformal prediction
[4, Sect. 4.2].

When designing a quasi-intelligent conformity measure, we still need an ob-
jective function, perhaps informal. In conformal prediction [4, Part I] a typical
informal objective function is the conformity measure’s sensitivity to unusual
observations (and so detecting their “nonconformity”), which leads to smaller
p-values for non-IID data. Motivated by this informal objective function, in the
first edition of [4] (Sect. 7.1 of the first edition) we only considered betting mar-
tingales S such that, for each n, Sn is a decreasing function of the nth p-value
pn. However, later [4, Sect. 8.6.1] it turned out that allowing non-decreasing Sn

greatly improves the performance of conformal test martingales on benchmark
datasets. Now it appears that our informal objective function in designing a
good conformity measure should be not to minimize the p-value (as it usually is
in conformal prediction [4, Sect. 3.1]) but to come up with the most informative
conformity scores αi capturing the most relevant features of zi.

4 Conclusion

In this note we concentrated on the case of the hypothesis of randomness as the
null. In fact conformal testing is applicable to many other “online compression
models”; see [4, Part IV]. Examples include partial exchangeability, Gaussian,
hypergraphical (useful for causal inference), and Markov models.
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The most obvious open problem arising in connection with Theorem 3.2 is
whether there is a way of extending the Bayes–Kelly algorithm and (8) to the
case when the conformity measure A also needs to be chosen optimally. When
only given the alternative hypothesis Q, how do we choose the pair (A,B), where
B is the betting martingale, optimally? In this note we have only discussed how
to choose B optimally given Q and A.

Of course, it is not surprising that Theorem 2.1 of [1] has limitations (and
the authors of [1] discuss some), but it is a great first step, and it opens up
interesting directions of further research.
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