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1 Errata

• Page 94, last line of Remark 3.15: We should have set ϕ(p) := log2 p,
since we assumed that ϕ is an increasing function (and if we do set
ϕ(p) := − log2 p, the criterion should prefer small rather than large values
of (3.37)).

• Page 142, the line following (4.38): (X,Y ) is not used and can be
removed.

• Page 302, 2nd line up from Lemma 9.14: Remove “and any ϵ > 0”.
When we say “p-variable” at the end of this sentence, we, of course, mean
a p-variable with respect to P .

• Page 359, 3rd line up from bottom: “Asarin [8]” should be “Asarin
[9]”.

• Page 375, 3rd line from bottom: “cliques” should be “maximal
cliques”.

• Page 449, reference 2: Remove “Johnson, W. E.” from the author list
and add “W. E. Johnson and” in front of the title. (This was a very bold
edit made by the Springer copy editor, which the authors missed.)

• Page 449, reference 8: Replace “δ-random” by “∆-random”.

• The □ symbol is often missing at the ends of proofs (e.g., in Proposi-
tions 2.9 and 2.15, Lemmas 2.16–2.18, and Corollary 2.20).

Some of these deficiencies (such as those on pp. 142 and 302) might not be errors
from the point of view of formal logic, but they are superfluous and confusing.
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2 Complements

• Page xxv, section “Other Notations”: We should have mentioned
that ln stands for natural log.

• Page 68, third item in the itemized list at the top of the page:
We could have been more specific and said that y = y(x) is a zero-mean
Gaussian random field with cov(yi, yj) = K(xi, xj).

• Page 68, first paragraph of Sect. 2.9.8: Proposition 1 in [265] does
not involve unspecified constants.

• Page 94, the end of Remark 3.15: The statement O(S) = R(CP) of
Theorem 3.1 can also be generalised to the criterion Sϕ preferring large
values of
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where ϕ(p) := − log2 p is Greenland’s [140] S-value corresponding to a
p-value of p. Namely, O(Sϕ) = R(CP). Indeed,

∑
y∈Y

ϕ(p(x, y)) =
∑
y∈Y

∫ ∞

0

1ϕ(p(x,y))<a da =

∫ ∞

0

∑
y∈Y

1p(x,y)>ϕ−1(a) da

=

∫ ∞

0

∣∣∣Γϕ−1(a)(x)
∣∣∣ da =

∫ 0

1

|Γϵ(x)|ϕ′(ϵ) dϵ =

∫ 1

0

|Γϵ(x)|
ϵ ln 2

dϵ,

where ϕ′ is the derivative of ϕ, and then the same argument applies.

• Page 138, first line after the proof of Proposition 4.8: We refer
to “[385, proof of Theorem 1]”. That proof is unnecessarily complicated;
namely, Lemma 1 in [385] (in the book’s bibliography) is easily obtained
by the method of coupling [Dubhashi and Panconesi, 2009, Sect. 7.4].

• Page 358, Sect. 11.6: Here we should have mentioned that generalized
conformal prediction was introduced in Vovk [2003].

• Pages 359–360, Sect. 11.6.1: The earliest description of Kolmogorov’s
programme may have been given in his popular talk [Kolmogorov, 2001,
pp. 135–136].

• Page 362, Sect. 11.6.4: Gibbs and Maxwell worked in the 3D Euclidean
space, of course. In Bourbaki’s [Bourbaki, 1969, Chap. 24] notation, we
consider a gas made up of N molecules of mass m at (absolute) temper-
ature T , and v1, . . . , vN are their velocities. The kinetic energy of the
system is

m

2

(
∥v1∥2 + · · ·+ ∥vN∥2

)
= 3NkT, (1)
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where k is Boltzmann’s constant. If T is given (this is our summary of
the system), the components of v1, . . . , vN lie on the sphere (1). Gibbs’s
model is that the actual velocities are chosen from the uniform distribution
on that sphere. Maxwell’s law of velocities is that the velocities have a
Gaussian distribution (with given variances, 2kT/m for each component,
which are independent).

• Page 405, line 2: We mention that Fisher regarded his verification
protocol as somewhat unnatural but do not mention that the protocol
given in [405, Sect. 9 of the arXiv report] is completely natural (since it
involves testing predictions based on all the available data).

• Page 473: We should have included

Probability integral transformation, 307, 327

in the index.

3 Comments

3.1 Lemma 9.6 on p. 269

Lemma 9.6 is a special case of a result on the optimality of the likelihood ratio.
Let P and Q be probability measures on the same sample space, playing the
role of the null and alternative hypotheses, respectively. The e-power of an
e-variable E w.r. to P is then defined as

∫
logE dQ.

Lemma A. For given null and alternative hypotheses P and Q, respectively,
such that Q ≪ P , the largest e-power is attained by the likelihood ratio dQ/dP :
for any e-variable E, ∫

logE dQ ≤
∫

log
dQ

dP
dQ.

And if Q ≪ P is violated, the largest e-power is ∞.

The likelihood ratio dQ/dP in Lemma A is understood to be the Radon–
Nikodym derivative of Q w.r. to P . For a simple proof, see, e.g., [Shafer, 2021,
Sect. 2.2.1] or [Vovk and Wang, 2024, Lemma 1].

Lemma 9.6 in the book is a special case of Lemma A in which P is the
uniform probability measure on [0, 1] and ρ = dQ/dP .

3.2 Section 9.3 on pp. 294–298

The behaviour of the test martingales and related processes in this section ap-
pears anomalous; e.g., the mean in the majority of rows in Table 9.1 lies outside
the interquartile range. In particular, the final values of our test martingales
have heavy-tailed distributions. The reason is that we consider multiplicative
processes, in the terminology of [Nair et al., 2022, Chap. 6].
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