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Abstract

Transductive Confidence Machine (TCM) is a way of converting standard
machine-learning algorithms into algorithms that output predictive regions
rather than point predictions. It has been shown recently that TCM is well-
calibrated when used in the on-line mode: at any confidence level 1 − δ,
the long-run relative frequency of errors is guaranteed not to exceed δ pro-
vided the examples are generated independently from the same probability
distribution P . Therefore, the number of “uncertain” predictive regions (i.e.,
those containing more than one label) becomes the sole measure of perfor-
mance. The main result of this paper is that for any probability distribution
P (assumed to generate the examples), it is possible to construct a TCM
(guaranteed to be well-calibrated even if the assumption is wrong) that per-
forms asymptotically as well as the best region predictor under P .
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1 Region Predictors

The notion of TCM was introduced in [5] and [8] (our exposition is, however,
self-contained). Before we define TCM (in §3) we discuss general properties
of region predictors.

In our learning protocol, Nature outputs pairs (x1, y1), (x2, y2), . . . called
examples. Each example (xi, yi) consists of an object xi and its label yi; the
objects are chosen from a measurable space X called the object space and
the labels are elements of a measurable space Y called the label space. In
this paper we assume that Y is finite (and endowed with the σ-algebra of
all subsets). The protocol includes variables Errn (the total number of errors
made up to and including trial n) and errn (the binary variable showing if an
error is made at trial n); it also includes analogous variables Uncn and uncn

for uncertain predictions:

Err0 := 0; Unc0 := 0;
FOR n = 1, 2, . . .:

Nature outputs xn ∈ X;
Predictor outputs Γn ⊆ Y; Nature outputs yn ∈ Y;

errn :=

{
1 if yn /∈ Γn

0 otherwise
; Errn := Errn−1 + errn;

uncn :=

{
1 if |Γn| > 1
0 otherwise

; Uncn := Uncn−1 + uncn;

END FOR.

We will use the notation Z := X×Y for the example space; Γn will be called
a predictive region (or just prediction).

We will be assuming that each example zn = (xn, yn), n = 1, 2, . . ., is
output according to a probability distribution P in Z and the examples are
independent of each other (so the sequence z1z2 . . . is output by the power
distribution P∞). This is Nature’s randomised strategy.

A region predictor is a family (indexed by γ ∈ [0, 1]) of Predic-
tor’s strategies Γγ such that Γγ(x1, y1, . . . , xn−1, yn−1, xn) is a measur-
able function of Nature’s moves and Γγ1 (x1, y1, . . . , xn−1, yn−1, xn) ⊆
Γγ2 (x1, y1, . . . , xn−1, yn−1, xn) when γ1 ≤ γ2. Since we are interested in pre-
diction with confidence, the predictor is given an extra input γ = 1−δ ∈ [0, 1],
which we call the confidence level (typically it is close to 1, standard values
being 95% and 99%); the complementary value δ is called the significance
level.
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Figure 1: On-line performance of the Nearest Neighbour TCM on the USPS
data set (9298 hand-written digits, randomly permuted) for the confidence
level 95% (left) and 99% (right). The solid line shows the cumulative num-
ber of errors, dotted the cumulative number of uncertain predictions, and
dashdot the cumulative number of empty predictions (inevitably leading to
an error). For 99%, the dashdot line coincides with the horizontal axis (there
are no empty predictions) and so is invisible. This and following figures are
not significantly affected by statistical variation (due to the random choice
of the permutation of the data set).

To provide the reader with an intuition about region prediction, we
present results for Predictor’s particular strategy (“1-Nearest Neighbour
TCM”; for details, see [10]) on the USPS data set (as described in [7], §12.2,
but randomly permuted). Figure 1 shows the cumulative number of errors
Errn plotted against n = 0, 1, . . . , 9298 (solid line), the cumulative number
Uncn of uncertain predictions Γn, and that of empty predictions (for which
|Γn| = 0). Figure 2 (left) gives the empirical calibration curve

δ 7→ ErrN(USPS, Γ1−δ)/N

and the empirical performance curve

δ 7→ UncN(USPS, Γ1−δ)/N

for this region predictor; we use the strategies followed by Nature (the ran-
domly permuted USPS data set) and Predictor (corresponding to significance
level δ) as arguments for Err and Unc; N = 9298 is the size of the USPS
data set.
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Figure 2: The empirical calibration and performance curves for the Near-
est Neighbour TCM on the USPS data set (left); their left edges stretched
horizontally (right).

2 Well-Calibrated and Asymptotically Opti-

mal Region Predictors

Suppose we know the true distribution P in Z generating the examples. In
this section we will construct a region predictor optimal under P ; we will
often omit P from our notation.

Let PX be the marginal distribution of P in X (i.e., PX(E) := P (E×Y))
and PY |X(y | x) be the conditional probability that, for a random example
(X, Y ) chosen from P , Y = y provided X = x (we fix arbitrarily a regular
version of this conditional probability). We will often omit subindices X and
Y |X.

The predictability of an object x ∈ X is

f(x) := max
y∈Y

P (y |x)

and the predictability distribution function is the function F : [0, 1] → [0, 1]
defined by

F (β) := P{x : f(x) ≤ β}.
An example of such a function F is given in Figure 3 (left); the graph of F
is the thick line, and the unit box is also shown. The intuition behind some
constructions in this paper will become clearer if the case of finite X with
equiprobable objects is considered first; see Figure 3, right.
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Figure 3: Left: The predictability distribution function F . The function F
is non-decreasing, continuous on the right, and F (1/|Y|) = 0. For a possibly
more realistic example of a predictability distribution function, see Figure 6.
Right: The predictability distribution function (thick line) in the case where
the object space X is finite and all objects x ∈ X have the same probability.
The objects are numbered, from 1 to 8 in this case, in the order of decreasing
predictability.

The success curve S of P is defined by the equality

S(δ) = inf

{
B ∈ [0, 1] :

∫ 1

0

(F (β)−B)+dβ ≤ δ

}
,

where t+ stands for max(t, 0); the function S is also of the type [0, 1] → [0, 1].
(Why the terminology introduced here and below is natural will become clear
from Theorems 1 and 2.) Geometrically, S is defined from the graph of F
as follows (see Figure 3, left): move the point B from A to Z until the area
of the curvilinear triangle ABC becomes δ (assuming this area does become
δ eventually, i.e., δ is not too large); the ordinate of B is then S(δ). The
intuition in the case of finite X (Figure 3, right) is that 1 − S(δ) is the
maximum fraction of objects that are “easily predictable” in the sense that
their cumulative lack of predictability does not exceed δ (where the lack of
predictability 1−f(x) of each object is taken with the weight 1/|X|). Notice
that the value S(δ) in fact satisfies the equality

∫ 1

0

(F (β)− S(δ))+dβ = δ

4



provided δ does not exceed the critical significance level

δ0 :=

∫ 1

0

F (β)dβ (1)

(the area under the thick curve in Figure 3, left; we will later see that this
coincides with what is sometimes called Bayes error or Bayes risk—see, e.g.,
[2], §2.1).

So far we have defined some characteristics of the distribution P itself;
now we will give definitions related to individual region predictors. The most
natural class of region predictors is that of permutationally invariant region
predictors Γ, for which Γ1−δ(z1, . . . , zn, x) does not depend on the order of
z1, . . . , zn (we know the examples are i.i.d., so knowing the order should not
help).

The calibration curve of a region predictor Γ under P is the following
function of the type [0, 1] → [0, 1]:

C(δ) := inf

{
β :P

{
lim sup

n→∞

Errn(P∞, Γ1−δ)

n
≤ β

}
= 1

}
(2)

(P(E) stands for the probability of event E). By the Hewitt–Savage zero-one
law (see, e.g., [6], Theorem IV.1.3) in the case of permutationally invariant
region predictors this definition will not change if “= 1” is replaced by “> 0”
in (2). The performance curve of Γ under P is defined by

P(δ) := inf

{
β :P

{
lim sup

n→∞

Uncn(P∞, Γ1−δ)

n
≤ β

}
= 1

}
; (3)

this is again a function of the type [0, 1] → [0, 1]. The Hewitt–Savage zero-one
law again implies that for permutationally invariant Γ this will not change if
“= 1” is replaced by “> 0”.

We will say that a region predictor Γ is well-calibrated under P if its
calibration curve C(δ) is below the diagonal: C(δ) ≤ δ for any significance
level δ. It is asymptotically optimal under P if its performance curve coincides
with the success curve: P(δ) = S(δ) for all δ.

Theorem 1 Let P be a probability distribution in Z with success curve S.
If a region predictor Γ is well-calibrated under P , its performance curve P is
above S: for any δ, P(δ) ≥ S(δ). Moreover, for any significance level δ,

lim inf
n→∞

Uncn(P∞, Γ1−δ)

n
≥ S(δ) a.s. (4)
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Let us now assume, for simplicity, that the distribution P is regular,
in the sense that the predictability distribution function F is continuous.
(The general case will be considered in §5 and will involve randomised region
predictors.)

The main result of this paper (Theorem 2, strengthened in Theorem 2r)
is that one can construct an asymptotically optimal TCM (which is well-
calibrated automatically, by [10]). If, however, we know for sure that the true
distribution is P it is very easy to construct a well-calibrated and asymp-
totically optimal region predictor. Fix a choice function ŷ : X → Y such
that

∀x ∈ X : f(x) = P (ŷ(x) | x)

(to put it differently, ŷ(x) ∈ arg maxy P (y |x)). Define the P -Bayesian region
predictor Γ by

Γ1−δ(z1, . . . , zn, x) :=

{ {ŷ(x)} if F (f(x)) ≥ S(δ)
Y otherwise,

for all significance levels δ and data sequences (z1, . . . , zn, x) ∈ Zn × X,
n = 0, 1, . . . . It can be shown that the P -Bayesian region predictor is well-
calibrated and asymptotically optimal under P . (Our definition of the P -
Bayesian region predictor is arbitrary in several respects; in principle, dif-
ferent choice functions can be used at different trials, the prediction can be
arbitrary when F (f(x)) = S(δ), and Y can be replaced by any E ⊆ Y such
that P (E | x) :=

∑
y∈E P (y |x) = 1.)

The critical significance level (1) is an important characteristic of the
probability distribution P generating the examples. If δ > δ0, an optimal re-
gion predictor will always output certain predictions and, if forced to achieve
the error rate δ, will sometimes have to output empty predictions. If, on the
other hand, δ < δ0, there will be uncertain predictions but no empty predic-
tions. Figure 1 suggests that the critical significance level for the USPS data
set is between 1% and 5%. This agrees with the observation that the critical
significance level is just the error rate of the Bayesian point predictor (which
is restricted to outputting Γn with |Γn| = 1 and minimises the expected
number of errors) and the fact (reported in [7]) that the error rate achieved
by humans on the USPS data set is 2.5%. Notice that in Figure 1 (left)
the onset of empty predictions closely follows the point where all predictions
become certain; see also Figures 4 and 5.

6



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

350

examples

cu
m

ul
at

iv
e 

er
ro

rs
, u

nc
er

ta
in

 a
nd

 e
m

pt
y 

pr
ed

ic
tio

ns

errors
uncertain predictions
empty predictions

Figure 4: On-line performance of the Nearest Neighbour TCM on the USPS
data set for the confidence level 97.5%. (This figure cannot be directly com-
pared to the error rate of 2.5% for humans reported in [7], since this experi-
ment has been carried out on the randomly permuted data set, whereas the
test part of the USPS data set is known to be especially hard.)

3 Transductive Confidence Machine

The procedure at the end of §2 works well when P is known. If, however,
P is only a convenient benchmark, the Bayesian region predictor can give
very misleading results [4]. In the rest of this paper we will discuss how
to ensure well-calibratedness under any distribution in Z without losing the
asymptotic performance of the Bayesian predictor if P happens to be the
true distribution.

Transductive Confidence Machine (TCM) is a way of transition from what
we call an “individual strangeness measure” to a region predictor. A family
of measurable functions {An : n = 1, 2, . . .}, where An : Zn → Rn for all n
and R is the set of all real numbers (equipped with the Borel σ-algebra), is
called an individual strangeness measure if, for any n = 1, 2, . . ., each αi in

An : (z1, . . . , zn) 7→ (α1, . . . , αn) (5)

is determined by zi and the bag *z1, . . . , zn+. (The difference between the bag
*z1, . . . , zn+ and the set {z1, . . . , zn} is that the former can contain several
copies of the same element.)

The TCM associated with the individual strangeness measure An is the
following region predictor: Γ1−δ (x1, y1, . . . , xn−1, yn−1, xn) is defined to be

7



the set of all labels y ∈ Y such that

#{i = 1, . . . , n : αi ≥ αn}
n

> δ , (6)

where
(α1, . . . , αn) := An((x1, y1), . . . , (xn−1, yn−1), (xn, y)) . (7)

In general, a TCM is the TCM associated with some individual strangeness
measure. It is shown in [10] that TCM is well-calibrated under any P (the
technical report [10] also contains stronger assertions: for example, TCM is
still well-calibrated, in a natural sense, when the confidence level 1 − δ is
allowed to depend on n).

4 Asymptotically Optimal TCM

If we suspect that the probability distribution in Z generating the examples
might be P , we can define the individual strangeness measure (5) by

αi :=

{
0 if yi = ŷ(xi)

P (ŷ(xi) | xi) otherwise .
(8)

The corresponding TCM will be called the P -TCM (cf. [9]). We say that
a region predictor is universally well-calibrated if it is well-calibrated under
any probability distribution P in Z.

Theorem 2 Let P be a regular probability distribution in Z. The P -TCM
is (a) universally well-calibrated and (b) asymptotically optimal under P .

5 Randomised Region Predictors

In this section we will remove the assumption that the probability distribu-
tion P generating examples is regular. The price we will have to pay is that
we will have to generalise the notion of region predictor in general, and TCM
in particular, to allow using a generator of random numbers (as in [10]).

The generator that we consider generates a sequence τn, n = 1, 2, . . ., of
uniformly distributed independent random numbers in the interval [0, 1]; τn

will be used by Predictor at trial n of our basic protocol (see §1). Formally,
a randomised region predictor Γ is a family, indexed by n = 1, 2, . . . and

8



γ ∈ [0, 1], of measurable functions Γγ(z1, τ1, . . . , zn−1, τn−1, xn, τn), where the
zi ∈ Z, i = 1, . . . , n− 1, are examples, τi ∈ [0, 1], i = 1, . . . , n, and xn ∈ X is
an object, which satisfies

Γγ1 (z1, τ1, . . . , zn−1, τn−1, xn, τn) ⊆ Γγ2 (z1, τ1, . . . , zn−1, τn−1, xn, τn)

whenever γ1 ≤ γ2. The notation errn, uncn, etc., will be continued to be
used in the randomised case as well; it should be remembered that these now
depend on τ1, τ2, . . . . We can strengthen Theorem 1 as follows.

Theorem 1r. Let P be a probability distribution in Z with success curve S.
If a randomised region predictor Γ is well-calibrated under P , then for any
significance level δ,

lim inf
n→∞

Uncn(P∞, Γ1−δ)

n
≥ S(δ) a.s.

The “a.s.” in this theorem refers to the probability distribution (P × U)∞

generating the sequence z1, τ1, z2, τ2, . . ., with U standing for the uniform
distribution in [0, 1].

Next we introduce a randomised version of TCM. The randomised
Transductive Confidence Machine (rTCM) associated with an individual
strangeness measure An is the following randomised region predictor Γ1−δ:
at any trial n and for any label y ∈ Y,

1. if #{i = 1, . . . , n : αi > αn}/n > δ (as before, the αs are defined by (7)),
the label y is included in Γ1−δ;

2. if #{i = 1, . . . , n : αi ≥ αn}/n ≤ δ, y is not included in Γ1−δ;

3. otherwise, y is included in Γ1−δ if

τn <
#{i = 1, . . . , n : αi ≥ αn} − nδ

#{i = 1, . . . , n : αi = αn} . (9)

We say that a randomised region predictor Γ is perfectly calibrated if,
under any probability distribution P , its calibration curve C(δ) coincides
with the diagonal: C(δ) = δ for any significance level δ. (Formally, this
definition can also be given for deterministic predictors as well, but it would
be impossible to satisfy in some cases.) The P -rTCM is defined to be the
rTCM associated with the individual strangeness measure (8).

9



Theorem 2r. Let P be a probability distribution in Z. The P -rTCM is
perfectly calibrated and, under P , asymptotically optimal.

Notice that the rTCM makes at least as many errors as the TCM associ-
ated with the same individual strangeness measure. It is shown in [10] that
rTCM’s errors are independent and happen with probability δ at any con-
fidence level 1 − δ. The difference between TCM and rTCM is typically
negligible after the first several hundred trials; cf. the dotted line in Figure 2
(left).

6 Conclusion

In this paper we defined two desiderata for region predictors: being well-
calibrated and asymptotic optimality. Being well-calibrated is the first pri-
ority: without it, the meaning of confidence levels is lost and it does not
make sense to talk about optimality. If the probability distribution P gen-
erating individual examples is known, the Bayesian region predictor is well-
calibrated and asymptotically optimal. But even in the situation where P
is just a convenient guess that we are unwilling to take too seriously, there
exists a region predictor (a TCM) which is universally well-calibrated and
asymptotically optimal under P .
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Appendix: Proofs

First we establish some simple properties of the predictability distribution
function and success curve.

Lemma 1 The predictability distribution function F satisfies the following
properties:

1. F (ε) = 0 for some ε > 0 and F (1) = 1;

2. F is non-decreasing;

3. F is continuous on the right.

If a function F : [0, 1] → [0, 1] satisfies these properties, there exist a mea-
surable space X, a finite set Y, and a probability distribution P in X × Y
for which F is the predictability distribution function.

Proof Properties 1 (cf. the caption to Figure 3), 2, and 3 are obvious (and
the last two are well-known properties of all distribution functions). The fact
that these three properties characterise predictability distribution functions
easily follows from the fact that the last two properties plus F (−∞) = 0 and
F (∞) = 1 characterise distribution functions (see, e.g., [6], Theorem II.3.1).

We will use the notations g′left and g′right for the left and right derivatives,
respectively, of a function g.

Lemma 2 The success curve S : [0, 1] → [0, 1] always satisfies these proper-
ties:

1. S is convex.

2. There is a point δ0 ∈ [0, 1] (the critical significance level) such that
S(δ) = 0 for δ ≥ δ0 and S′left(δ0) < −1; therefore, S′left < −1 and
S′right < −1 to the left of δ0, and the function S is decreasing before it
hits the δ-axis at δ0.

3. S is continuous at δ = 0; therefore, it is continuous everywhere in [0, 1].

If a function S : [0, 1] → [0, 1] satisfies these properties, there exist a mea-
surable space X, a finite set Y, and a probability distribution P in X × Y
for which S is the success curve.

12



Proof For the basic properties of convex functions and their left and right
derivatives, see, e.g., [1], §I.4. The statement of the lemma follows from
the fact that the success curve S can be obtained from the predictability
distribution function F using these steps (labelling the horizontal and vertical
axes as x and y respectively):

1. Invert F : F1 := F−1.

2. Flip F1 around the line x = 0.5 and then around the line y = 0.5:
F2(x) := 1− F1(1− x).

3. Integrate F2: F3(x) :=
∫ x

0
F2(t)dt.

4. Invert F3: F4 := F−1
3 .

5. Flip F4 around the line y = 0.5: F5 := 1− F4.

It can be shown that S = F5, no matter which of the several natural def-
initions of the operation g 7→ g−1 is used; for concreteness, we can define
g−1(y) := sup{x : g(x) ≤ y} for non-decreasing g (so that g−1 is continuous
on the right).

Visually the empirical performance curve in Figure 2 seems to satisfy the
properties listed in Lemma 2 for significance levels that are not too large or
too small (approximately in the range 0.1%–5%); for an even better agree-
ment, see Figure 5.

A natural idea is to reverse the process of transforming F into S and try
to obtain an estimate of the predictability distribution function F from an
empirical performance curve. Figure 6 shows the result of such an attempt.
Such pictures, however, should not be taken too seriously, since the differen-
tiation operation needed in finding F is known to be unstable (see, e.g., [7],
§1.12).

Proof of Theorems 1 and 1r.

Let us check first that (4) indeed implies P(δ) ≥ S(δ). Since probability
measures are σ-additive, (3) implies

lim sup
n→∞

Uncn(P∞, Γ1−δ)

n
≤ P(δ) a.s. ,

13
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Figure 5: Left: Picture analogous to Figure 2 (right) for the last one
thousand examples. Notice a different behaviour of the empirical perfor-
mance curve as it approaches the horizontal axis as compared with Figure 2
(right). The unexpected behaviour of the empirical performance curve as
it approaches the vertical axis may be explained (at least partially) by the
“granularity” of TCM: for example, the “realised p-value” given by the left-
hand side of (6) can never be less than 1/9298 > 0.01%; this behaviour may
become more regular for randomised TCM. Right: The bottom part of the
picture on the left stretched vertically. Notice that the slope of the empirical
performance curve is at least 1 in absolute value before it hits the horizontal
axis; this agrees with Lemma 2 on p. 12. This figure suggests that, if the
1-NN TCM were an optimal region predictor, the critical significance level
for the USPS data set would be close to 2.3.

and so we obtain from (4):

P(δ) ≥ lim sup
n→∞

Uncn(P∞, Γ1−δ)

n
≥ lim inf

n→∞
Uncn(P∞, Γ1−δ)

n
≥ S(δ)

almost surely; since the two extreme terms are deterministic, we have P(δ) ≥
S(δ).

We start the actual proof with alternative definitions of calibration and
performance curves. Complement the protocol of §1 in which Nature plays
P∞ and Predictor plays Γ1−δ with the following variables:

errn := (P ×U){(x, y, τ) : y /∈ Γ1−δ(x1, τ1, y1, . . . , xn−1, τn−1, yn−1, x, τ)} ,

uncn := (PX ×U){(x, τ) : |Γ1−δ(x1, τ1, y1, . . . , xn−1, τn−1, yn−1, x, τ)| > 1} ,
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Figure 6: An attempt to reverse engineer the predictability distribution func-
tion of the hand-written digits in the USPS data set. This picture was ob-
tained from the solid line in Figure 5 (left) by reversing the list in the proof
of Lemma 2.

Errn :=
n∑

i=1

erri , Uncn :=
n∑

i=1

unci

(we are not always consistent in the order of arguments of the function Γ1−δ).
The prequential calibration curve of Γ under P is defined by

C(δ) := inf

{
β :P

{
lim sup

n→∞

Errn(P∞, Γ1−δ)

n
≤ β

}
= 1

}

and the prequential performance curve of Γ under P by

P(δ) := inf

{
β :P

{
lim sup

n→∞

Uncn(P∞, Γ1−δ)

n
≤ β

}
= 1

}
,

where P refers to the probability distribution (P ×U)∞ over the examples
z1, z2, . . . and random numbers τ1, τ2, . . . . By the martingale strong law of
large numbers the prequential versions of the calibration and performance
curves coincide with the original versions: indeed, since Errn−Errn and

Uncn−Uncn are martingales (with increments bounded by 1 in absolute
value) with respect to the filtration Fn, n = 0, 1, . . ., where each Fn is gen-
erated by z1, . . . , zn and τ1, . . . , τn, we have

lim
n→∞

Errn−Errn

n
= 0 P-a.s.
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and

lim
n→∞

Uncn−Uncn

n
= 0 P-a.s.

(see, e.g., [6], Theorem VII.5.4). It is also clear that we can replace Uncn by
Uncn in (4).

Without loss of generality we can assume that Nature’s move Γn at trial
n is either {ŷ(xn)} or the whole label space Y. Furthermore, we can assume
that

uncn = S(errn) (10)

at every trial, since the best way to spend the allowance of errn is to be
certain on objects x with the largest (topmost in Figure 3) representations
F (f(x)). (For a formal argument, see the end of this proof.) Using the
fact that the success curve S is convex, non-increasing, and continuous (see
Lemma 2), we obtain

Uncn

n
=

1

n

n∑
i=1

unci =
1

n

n∑
i=1

S(erri) ≥ S

(
1

n

n∑
i=1

erri

)
= S

(
Errn

n

)
≥ S(δ)−ε ,

the last inequality holding almost surely for an arbitrary ε > 0 from some n
on and δ being the significance level used.

It remains to prove formally that uncn ≥ S(errn) (which is the part of (10)
that we actually used). Let us fix 1− δ and x1, τ1, y1, . . . , xn−1, τn−1, yn−1; we
will write

Γ(x, τ) := Γ1−δ(x1, τ1, y1, . . . , xn−1, τn−1, yn−1, x, τ) ,

omitting the fixed arguments. Without loss of generality we are assuming
that either Γ(x, τ) = ŷ(x) or Γ(x, τ) = Y. Set

p(x) := U {τ : Γ(x, τ) = {ŷ(x)}} , δ := errn .

Our goal is to show that uncn ≥ S(δ); without loss of generality we assume
0 < δ < δ0. To put it differently, we are required to show that the value of
the optimisation problem

∫

X

p(x)P (dx) → max (11)

subject to the constraint
∫

X

(1− f(x))p(x)P (dx) = δ

16



is 1−S(δ) at best. By the Neyman–Pearson lemma (see, e.g., [3]) there exist
constants c > 0 and d ∈ [0, 1] such that

p(x) =





1 if f(x) > c
d if f(x) = c
0 if f(x) < c .

(12)

The constants c and d are defined (c uniquely and d uniquely unless the
probability of f(x) = c is zero) from the condition

∫

x:f(x)>c

(1− f(x))P (dx) + d

∫

x:f(x)=c

(1− c)P (dx) = δ ,

which is equivalent, by Fubini’s theorem (applied to the indicator function
of the subgraph of F ; see Figure 3, left), to

∫ 1

0

(F (β)− F (c))+dβ + d(1− c)(F (c)− F (c−)) = δ ,

where F (c−) is defined as limβ↑c F (β). From this it is easy to obtain that
the value of the optimal problem (11) is indeed 1− S(δ): using the notation
pd(x) for the right-hand side of (12), we have

∫

X

pd(x)P (dx) = d

∫
p1(x)P (dx) + (1− d)

∫
p0(x)P (dx)

= dP{x : f(x) ≥ c}+ (1− d)P{x : f(x) > c}
= d(1− F (c−)) + (1− d)(1− F (c))

= 1− F (c) + d(F (c)− F (c−))

= 1− S(δ) .

This completes the proof of Theorem 1r; since Theorem 1 is a special case,
it is also proved.

Proof of Theorems 2 and 2r.

The fact that every rTCM Γ is perfectly calibrated is proved in [10], so we
are only required to show that Γ is asymptotically optimal under P . Fix a
confidence level 1− δ; we will show that

lim sup
n→∞

Uncn(P∞, Γ1−δ)

n
≤ S(δ) (13)

17



almost surely (the underlying probability distribution P being the product
(P × U)∞). Without loss of generality we assume S(δ) < 1 ((13) holds
trivially when S(δ) = 1). Set

c := sup{β : F (β) ≤ S(δ)} .

The case c = 1 is simple: it means that P{x : f(x) < 1} ≤ S(δ); since, almost
surely, uncn = 0 at trials where f(xn) = 1, by Borel’s strong law of large
numbers we immediately obtain (13). Therefore, we assume c < 1 in the rest
of the proof.

First we consider the case F (c) = S(δ) (this will be sufficient to prove
Theorem 2, since F (c) = S(δ) is implied by F (c) = F (c−) and the rTCM
constructed in this part of the proof will be deterministic). Notice that
F (c + ε) > F (c) for any 0 < ε ≤ 1 − c (we are assuming ε ≤ 1 − c so that
F (c+ ε) is defined). We will prove that, for any 0 < ε ≤ 1− c and from some
n on,

P(uncn | Fn−1) ≤ F (c + ε) a.s. (14)

(we are using the same notation for an event and for its indicator function).
This will imply

lim sup
n→∞

Uncn

n
≤ F (c + ε)

almost surely; since limε↓0 F (c + ε) = S(δ), this will prove (13).
Fix 0 < ε ≤ 1− c; without loss of generality assume that F is continuous

at c+ε. Let us prove (14), assuming n is large enough. Suppose the examples
observed before trial n are (z1, . . . , zn−1) = ((x1, y1), . . . , (xn−1, yn−1)). Let us
say that an example (x, y) ∈ Z is wrongly classified if y 6= ŷ(x). Remember
that according to the individual strangeness measure (8) the strange elements
in every bag of examples are those that are wrongly classified, and the more
predictable they are the stranger. Notice that the prediction for the new
object xn will be certain if (a) the new object xn is to the right of β = c + ε
in Figure 3 (left), in the sense f(xn) ≥ c + ε, and (b) the number of the
wrongly classified objects xi, i = 1, . . . , n− 1, to the right of β = c + ε is less
than nδ − 10. The probability (conditional on Fn−1) of (a) is 1 − F (c + ε),
so to prove (14) it is sufficient to show that the event (b) (remember that
it is measurable w.r. to Fn−1) happens from some n on almost surely. The
probability that an object is wrongly classified and to the right of β = c + ε
is

b :=

∫ 1

0

(F (β)− F (c + ε))+dβ < δ .
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By Hoeffding’s inequality (see, e.g., [2], Theorem 8.1) the probability that
the event (b) will fail to happen is bounded from above by

e−2(nδ−10−(n−1)b)2/(n−1) ≤ e−κn , (15)

for some positive constant κ and from some n on. Since
∑

n e−κn < ∞, the
Borel–Cantelli lemma implies that (b) will almost surely happen from some
n on. This completes the proof in the case F (c) = S(δ).

Now we consider the case F (c) > S(δ) (which is the only remaining
possibility). In the remaining part of the proof it will be important that we
consider rTCM rather than TCM.

Let ε > 0 satisfy ε < F (c)− S(δ). We will prove that, from some n on,

P(uncn | Fn−1) ≤ S(δ) + ε a.s. (16)

This will imply

lim sup
n→∞

Uncn

n
≤ S(δ) + ε

almost surely, and so prove (13).
We say that an object and random number (x, τ) ∈ X × [0, 1] (such a

pair will be called an extended object) is above the line S(δ)+ ε (cf. Figure 3,
left) if either f(x) > c or

f(x) = c & τ ≥ S(δ) + ε− F (c−)

F (c)− F (c−)

(this definition corresponds to representing each extended object (x, τ) by
the point

(f(x), τF (f(x)) + (1− τ)F (f(x)−))

in Figure 3, left).
Let us prove (16), assuming n is large enough. Suppose the extended

objects observed before trial n are (x1, τ1, . . . , xn−1, τn−1). Now the prediction
for the new object xn will be certain if (a) the new extended object (xn, τn)
is above S(δ) + ε, and (b) the number of the wrongly classified extended
objects (xi, τi), i = 1, . . . , n − 1, above S(δ) + ε is less than nδ − 10. (We
say that (x, τ) is wrongly classified if x is.) The probability (conditional on
Fn−1) of (a) is 1− S(δ)− ε, so to prove (16) it is sufficient to show that the
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event (b) happens from some n on almost surely. The probability that an
extended object is wrongly classified and above S(δ) + ε is

b :=

∫ 1

0

(F (β)− S(δ)− ε)+dβ < δ .

The proof is completed literally as before: apply Hoeffding’s inequality to
obtain upper bound (15) and then apply the Borel–Cantelli lemma.
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