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Abstract

Mondrian Confidence Machine (MCM) is an on-line prediction algorithm
that, given a split of all examples into a finite number of types k and for
each type a significance level δk, outputs as its prediction the set of labels
deemed possible at the level δk. MCM includes as special cases Transductive
Confidence Machine (TCM) and Inductive Confidence Machine (ICM) and is
designed to take care of such issues as different risks of false positive and false
negative predictions, conditional inference, and a slow teacher. In this paper
we generalize known results about TCM and ICM showing that each MCM is
type-wise well-calibrated, in the sense that predictions at significance levels
δk will be wrong with relative frequency at most δk for each type k in the long
run. Our experimental results show advantages of MCM over the previously
known algorithms.
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1 Introduction

We are interested in the problem of “predicting with confidence”: instead of
just point predictions output by the majority of machine-learning algorithms,
we would to have some indication of how likely different labels are. In this
paper (as in [4] but unlike [5]) we formalize this problem as that of computing
“predictive regions” (sets of labels). In the simplest case, we are given a
significance level δ > 0 (the probability of error we are prepared to tolerate)
and the goal is to compute predictive regions, ideally consisting of just one
label, containing the true label with probability 1−δ. It was found recently [4]
that Transductive Confidence Machine (first introduced in [5]) when applied
in the on-line fashion always achieves this goal provided the examples are
independent and identically distributed (i.i.d.). This is illustrated in §5.2.

In this paper we consider a slightly different problem. All possible ex-
amples are split into several types k (e.g., different types can correspond to
different labels, or kinds of objects, or just be determined by the ordinal
number of the example). A prediction algorithm takes as input a set of sig-
nificance levels δk, one for each type k, and for each new object outputs as
its prediction a predictive region. There are two natural desiderata for such
algorithms:

• they should be type-wise well-calibrated, in the sense that in the long
run the predictions for examples of type k are wrong with relative
frequency (at most) δk;

• if the first desideratum is satisfied, they should perform well, in the
sense that the number of uncertain (containing more than one label)
predictions should be as small as possible or, if the number of uncertain
predictions cannot be further improved, the number of empty predic-
tions is as large as possible.

This paper constructs what we call a “Mondrian Confidence Machine”
(MCM), and shows (in §3), without using any assumptions beyond i.i.d.
(the standard assumption saying that the examples are generated indepen-
dently from the same distribution), that it is well-calibrated in a strong non-
asymptotic sense: the conditional probability of error given that the current
type is k and given all the preceding types and errors is always δk. (This
is the type-wise version of a result proven in [4].) In this paper we do not
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deal formally with the second desideratum, but we will see in §5 that MCM
produces reasonable results on benchmark data sets.

MCM is a generalization of TCM and ICM; it solves the following three
practical problems.

• The problem of “asymmetric classification” (§4.3). MCM allows dif-
ferent significance levels to be specified for each possible classification
of an object. This might be useful in, e.g., distinguishing useful mes-
sages and spam in the problem of e-mail filtering: classifying a useful
message as spam is a more serious error than vice versa.

• The problem of conditional inference (raised by Cox [1] and treated
in §§4.3–4.4). Even in the situation where there is only one signifi-
cance level, we would often like our predictions to be well-calibrated
within each class and not just globally. Alternatively, we might want
our predictions to be well-calibrated within the set of examples with a
particular attribute.

• The problem of a slow teacher, who discloses the true label not imme-
diately but only after some delay (dealt with in §4.5 and, at a much
deeper level, in [3]).

In §5 we demonstrate that the second problem can indeed be real with ex-
periments on real-life data sets, the USPS handwritten digits data set and
the thyroid medical data set.

2 Type-wise region predictors

Our basic protocol is as follows. Nature outputs pairs

(x1, y1), (x2, y2), . . . (1)

called examples. Each example (xi, yi) consists of an object xi and its label
(or class, or classification) yi; e.g., the objects can be hand-written digits
and yi their classifications (numbers from 0 to 9). The objects are elements
of a measurable space X called the object space and the labels are elements
of a measurable space Y called the label space. We will use the notation
Z := X×Y for the example space; therefore, the infinite data sequence (1)
will be an element of the measurable space Z∞. We assume that the data
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sequence (1) is output according to P∞ for some probability distribution P
in Z, but no further assumptions will be made.

We are given a division of the Cartesian product {1, 2, . . . }×Z into types :
a function

κ : {1, 2, . . . } × Z → K

maps each pair (n, z) (z is an example and n will be, in our applications,
the ordinal number of this example in the data sequence z1, z2, . . . ) to its
type; K is the finite set of possible types. It is required that the elements
κ−1(k) of each type k form a rectangle A× B, for some A ⊆ {1, 2, . . . } and
B ⊆ Z. The function κ will be fixed in most of this paper; it will be called
the taxonomy.

We are interested in algorithms for predicting, at every trial n, the la-
bel yn given the object xn and all the previous examples, from (x1, y1) to
(xn−1, yn−1). Since we are interested in prediction with confidence, our al-
gorithms are given an extra input {δk ∈ (0, 1) : k ∈ K}, a significance level
δk for each class k; the complementary value 1 − δk is called the confidence
level. Formally, we define a type-wise region predictor to be a function

Γ : Z∗ ×X× (0, 1)K → 2Y (2)

((0, 1)K is the set of all functions of the type K → (0, 1) and 2Y is the set of
all subsets of Y; the argument δ : K → (0, 1) will be written as subindex)
which, for every significance levels δ1 ≥ δ2 (such inequalities are always
understood component-wise), every positive integer n, and every incomplete
data sequence

x1, y1, . . . , xn−1, yn−1, xn (3)

(we often ignore unnecessary parentheses, such as those around (xi, yi)) sat-
isfies

Γδ1 (x1, y1, . . . , xn−1, yn−1, xn) ⊆ Γδ2 (x1, y1, . . . , xn−1, yn−1, xn) . (4)

Intuitively, given the incomplete data sequence (3) and a significance level δ,
the region predictor Γ predicts that

yn ∈ Γδ (x1, y1, . . . , xn−1, yn−1, xn) ,

and the smaller δ the more emphatic the prediction; condition (4) is a natural
requirement of consistency.
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For any infinite data sequence

ω = (x1, y1, x2, y2, . . . ), (5)

significance level δ : K → (0, 1) and positive integer n, we define the number
of errors that Γ makes on examples of type k at the significance level δ on
the sequence ω during the first n trials to be

Errk
n(Γδ, ω) := #

{
i = 1, . . . , n :

κ(zi) = k & yi /∈ Γδ (x1, y1, . . . , xi−1, yi−1, xi)
}
,

where #B (or |B|) stands for the size of the set B. Similarly, the number of
uncertain predictions is given by

Unck
n(Γδ, ω) := #

{
i = 1, . . . , n :

κ(zi) = k & |Γδ (x1, y1, . . . , xi−1, yi−1, xi)| > 1
}
,

and the number of empty predictions is given by

Empk
n(Γδ, ω) := #

{
i = 1, . . . , n :

κ(zi) = k & Γδ (x1, y1, . . . , xi−1, yi−1, xi) = ∅}.

The number of times Nature output an example of type k (i.e., the number
of times κ(i, zi) = k) before and including trial n is

Numk
n := #

{
i = 1, . . . , n : κ(zi) = k

}
.

Sometimes we will also need the individual prediction results

errk
n(Γδ, ω) :=

{
1 if yn /∈ Γδ

0 otherwise,

where
Γδ := Γδ (x1, y1, . . . , xn−1, yn−1, xn) .

In this paper we usually consider randomized region predictors, which
depend, additionally, on a random number τn ∈ [0, 1].
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3 Mondrian Confidence Machine

Mondrian Confidence Machine (MCM) is a way of transition from what we
call a “Mondrian strangeness measure” to a region predictor. A family of
measurable functions {An : n ∈ N}, where N is the set of all positive integers,
An : Zn → Rn for all n ∈ N, and R is the set of all real numbers (equipped
with the Borel σ-algebra), is called a Mondrian strangeness measure if, for
any n ∈ N, any (z1, . . . , zn) ∈ Zn, any permutation π of {1, . . . , n} that
does not change the types of the examples in (z1, . . . , zn) (in the sense that
κ(zπ(i)) = κ(zi) for i = 1, . . . , n), and any (α1, . . . , αn) ∈ Rn,

(α1, . . . , αn) = An(z1, . . . , zn) =⇒
(απ(1), . . . , απ(n)) = An(zπ(1), . . . , zπ(n)). (6)

In other words,
An : (z1, . . . , zn) 7→ (α1, . . . , αn) (7)

is called a Mondrian strangeness measure if every αi is determined by the
example zi, the sequence κ(z1), . . . , κ(zn) and, for each type k ∈ K, the
multiset *zi : κ(zi) = k+,

The MCM associated with the Mondrian strangeness measure An is the
following randomized region predictor:

Γδ (x1, y1, . . . , xn−1, yn−1, xn, τn) (8)

is defined to be the set of all labels y ∈ Y such that

#{j : αij > αn}+ τn#{j : αij = αn}
m

> δ, (9)

where j ranges over 1, . . . , m and i1, . . . , im is the set

{i = 1, . . . , n : κ(i, zi) = κ(n, zn)}

sorted in the ascending order (in particular, im = n) and

(α1, . . . , αn) := An((x1, y1), . . . , (xn−1, yn−1), (xn, y)). (10)

In general, an MCM is the MCM associated with some Mondrian
strangeness measure.
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Theorem 1 For any MCM Γ, any significance level δ : K → (0, 1), and any
probability distribution P in Z, the image of (P × U)∞ under the mapping

(ω ∈ Z∞, τ ∈ [0, 1]∞) 7→ (kn, en)∞n=1

:= (κ(n, zn), errn(Γδ, ω, τ))∞n=1

is a probability distribution satisfying the following properties: kn are inde-
pendent random elements taking values in K; the conditional probability that
en = 1 given k1, e1, . . . , kn−1, en−1, kn is always δkn.

Theorem 1 also implies

Corollary 1 Every MCM Γ is precisely type-wise well-calibrated in the
sense that, for each class k ∈ K,

Numk
∞ = ∞ =⇒ lim

n→∞
Errk

n(Γ1−δ, ω, τ)

Numk
n

= δk (11)

for (P × U)∞-almost all ω ∈ Z∞ and τ ∈ [0, 1]∞.

Corollary 1 uses the natural notation

Numk
∞ := lim

n→∞
Numk

n .

The adverb “precisely” in its statement indicates that (11) is an equality; we
will say that a region predictor is type-wise well-calibrated if it satisfies (11)
with “=” replaced by “≤” and “lim” replaced by “lim sup”.

4 Special cases

The only important aspect of a taxonomy κ is the equivalence relation it
induces ((n′, z′) and (n′′, z′′) are κ-equivalent if κ(n′, z′) = κ(n′′, z′′)) and
not the chosen labels κ(n, z) for the equivalence classes. There are many
different ways to split the rectangle N × Z into rectangles (as evidenced by
Piet Mondrian’s numerous compositions; see Figure 1).

In this section we will consider several simple special cases.
First we introduce a natural partial order on taxonomies. We say that a

taxonomy κ1 is finer than another taxonomy κ2 if, for all pairs (n′, z′) and
(n′′, z′′),

κ1(n
′, z′) = κ1(n

′′, z′′) =⇒ κ2(n
′, z′) = κ2(n

′′, z′′).
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{1, 2, . . . }

Z

Figure 1: A random taxonomy (cf. Composition with Color Planes and Gray
Lines 1 by Piet Mondrian, 1918)

We will say that κ1 and κ2 are equivalent if each of them is finer than the
other; we will sometimes identify equivalent taxonomies. TCM corresponds
to the crudest (i.e., constant, see Figure 2) taxonomy. Since we are only
interested in taxonomies with a finite number of types, we have the following
proposition.

Proposition 1 Let a taxonomy κ1 be finer than a taxonomy κ2. If a re-
gion predictor is (precisely) well-calibrated w.r. to κ1, it is (precisely) well-
calibrated w.r. to κ2.

A taxonomy effectively partitions the example space Z into rectangular
groups. By considering different partitions we can construct specialized ver-
sions of the MCM to cope with different drawbacks of previously known al-
gorithms. Essentially the only difference between the versions of the MCM is
the method of calculating the p-values. For example, calculating the TCM’s
p-values in our on-line protocol we compare the strangeness measure of a
new example against the strangeness measures of all examples observed up
to that point. In contrast, finer models of MCM compare the strangeness
measure of a new example with the previously observed examples of the same
type.
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{1, 2, . . . }

Z

Figure 2: TCM

4.1 Transductive Confidence Machine

TCM is an MCM corresponding to the least fine taxonomy shown in Fig-
ure 2. It is shown in [4] that TCM is well-calibrated; this is a special case of
Theorem 1.

4.2 Inductive Confidence Machine

ICM is also a special case of MCM; for a full description, see [4]. The
corresponding taxonomy is shown in Figure 3. Again the result of [4] that
ICM is well-calibrated is a special case of Theorem 1.

4.3 Class-conditional inference and asymmetric classi-
fication

In this case the types are determined by labels; we would like to have guar-
antees about error frequency for each individual label, and perhaps also have
different significance levels for different labels. The corresponding taxon-
omy is shown in Figure 4, where it is assumed that Y = {y(1), . . . , y(L)}.
In principle, each class k can have its own significance level δk (asymmetric
classification), but we are also interested in the case where all δk coincide
(class-conditional inference).
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{1, . . . , m1}
{m1 + 1,
. . . ,m2}

{m2 + 1,
. . . ,m3}

Z

Figure 3: ICM

4.4 Attribute-conditional inference

The notion of MCM allows the user to respect the conditionality principle
([1], [2], §2.3) if he chooses to do so. Consider the following standard example
(slightly modified) due to Cox [1]. Suppose we have two instruments for
measuring an unknown bit; at each trial one instrument is used once, and
the instrument to use is chosen at random (tossing a fair coin). Instrument 1
is more accurate, with the probability of mistake equal to 1%, whereas the
probability of mistake for instrument 2 is 5%. Formally, each object is a pair
x = (i, b), where i ∈ {1, 2} is the instrument used and b ∈ {0, 1} is the result
of the measurement; the label y ∈ {0, 1} is the true bit.

It is clear that, asymptotically, at level 99.5% the optimal TCM will pre-
dict objects (1, . . . ) with certainty and will not predict objects (2, . . . ) at all
(in the sense that its predictions will be the set {0, 1} of all labels). Therefore,
it will be well-calibrated. At level 97% the optimal TCM will asymptotically
predict all objects with certainty; so it will also be well-calibrated.

In both cases conditional validity is problematic (as argued by Cox); it
does not prevent, however, the predictions from being well-calibrated. But
the situation becomes even worse if we want to have two different significance
levels for objects (1, . . . ) and (2, . . . ): if we take 0.5% for (1, . . . ) and 3%
for (2, . . . ), type-wise well-calibratedness is lost.

The taxonomy for Cox’s example is shown in Figure 5, where “Instru-
ment 1” stands for the set of examples ((1, . . . ), . . . ) and “Instrument 2”
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{1, 2, . . . }
X× {y(1)}

X× {y(2)}

X× {y(3)}

Figure 4: Asymmetric inference

stands for the set of examples ((2, . . . ), . . . ).

4.5 Slow teacher

The usual scenario of on-line learning is unrealistic in that in practice we can
expect a delay between giving a prediction and finding out the true label.
(And, indeed, if there is no delay in obtaining the true label, there is no
need in the prediction.) In this subsection we will show that, if the delay is
constant, a simple MCM will be well-calibrated and asymptotically optimal
in this situation of a“slow teacher”.

Let D be the delay. Define κ(n, z) := n mod D (this is illustrated in
Figure 6 for D = 3). Theorem 1 implies that this MCM is well-calibrated.
For more detail and a more efficient algorithm, see [3].

5 Experimental results

As we mentioned in §1, MCM makes it possible to deal with the challenges
of asymmetric classification, conditional inference, and a slow teacher. It
is obvious that asymmetric classification and a slow teacher are important
issues not addressed by the approaches described in literature. In this section
we will describe experimental results demonstrating conditional properties of
TCM (and, even more so, ICM) that in many applications may be interpreted
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{1, 2, . . . }

Instrument 1

Instrument 2

Figure 5: Cox’s example

as failures. As the strangeness measure we will always use the 1-Nearest
Neighbor measure

αi :=
minj 6=i:yj=yi

d(xi, xj)

minj 6=i:yj 6=yi
d(xi, xj)

,

where d is the Euclidean distance (i.e., an object is considered strange if it
is in the middle of objects labeled in a different way and is far from objects
labeled in the same way); the objects will be vectors in a Euclidean space.

5.1 Data sets

We chose two high-dimensional real-life data sets from very different problem
domains, image recognition and medical diagnostics. In our experiments we
combined the training and test sets, and randomly permuted the examples,
to make sure the i.i.d. (or at least exchangeability) assumption holds. We
use the performance measure mentioned earlier, counting the number of er-
roneous, uncertain and empty predictions. In Figures 7–13 we will plot Errn,
nδ, Uncn and Empn against n for different data sets and confidence levels
1− δ.

The first data set is the well-known USPS data set of handwritten digits,
consisting of scanned 16× 16 grayscale images of handwritten numerals 0–9
taken from postcodes gathered by the US Postal Service. There are 256 con-
tinuous attributes corresponding to the intensity of each pixel in the image,
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1 2 3 4 5 6

Z

Figure 6: Slow teacher

and ten possible classification labels. With the training and test sets com-
bined there are 9298 examples in total. The data set is reasonably balanced
in the proportion of examples for each class.

The other data set is the thyroid disease records, supplied by the Gar-
avan Institute and J. Ross Quinlan. The problem is to determine whether
a patient referred to the clinic is hypothyroid. We used the “ann-thyroid”
data downloaded from the UCI web site

ftp://ftp.ics.uci.edu/pub/

machine-learning-databases/

thyroid-disease/

Each record has 21 attributes in total (15 Boolean and 6 continuous) corre-
sponding to various symptoms and measurements taken from each patient.
The data set contains 7200 examples in total and is highly unbalanced in its
representation of the 3 possible classes corresponding to medical diagnoses
(2.30% of examples are in the class “primary hyperthyroid”, 5.11% of exam-
ples in the class “compensated hyperthyroid”, and 92.59% examples in the
class “normal”).
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Figure 7: The performance of TCM on the USPS data set at the 99% confi-
dence level.
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Figure 8: The performance of TCM on the USPS data set at the 95% confi-
dence level.
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Figure 9: The performance of TCM on the thyroid data set at the 95%
confidence level.

5.2 Transductive Confidence Machine

We will be interested in how the MCM’s performance compares with the
TCM’s performance (since ICM is just a computationally efficient modifica-
tion of TCM, and its performance is usually not as good). Figures 7 and 8
show that TCM is well-calibrated on the USPS data set; since the USPS
data set is so clean, we can see that when the confidence level becomes too
easy (95%) the algorithm starts producing empty predictions (always leading
to an error and serving as a warning that the current example is difficult).
Figure 9 shows that the unconditional TCM is well-calibrated on the thyroid
data set.

5.3 Class-conditional performance

Figures 10–13 show results of experimenting with the USPS and thyroid data
sets with all confidences levels set to 95%. Figure 10 shows that the TCM
is not well-calibrated at the 95% confidence level on the USPS “5” digits,
giving 11.73% of errors. (Since we randomly permute the data and our al-
gorithms are randomized, all such figures are subject to moderate statistical
fluctuations: typical standard deviation is 1%. All reported results are for
programs using MATLAB’s generator of random numbers with seed 0.) In
contrast the class conditional MCM gives 5.31% of errors (Figure 11). Fig-
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Figure 10: The performance of TCM on the USPS data sets for the “5” digit
images at the 95% confidence level.
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Figure 11: The performance of the class-conditional MCM on the USPS data
sets for the “5” digit images at the 95% confidence level.
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Figure 12: The performance of TCM on the thyroid data set’s class “com-
pensated hyperthyroid”.
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Figure 13: The performance of class-conditional MCM on the thyroid data
set’s class “compensated hyperthyroid”.
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Table 1: Percentage of errors at the 95% confidence level and the correspond-
ing p-values (upper if the percentage of errors is above 5% and lower if it is
below 5%) in experiments on the USPS data set.

class size errors errors (%) p-value
0 1553 13 0.84 3.35× 10−20

1 1269 12 0.95 1.02× 10−15

2 929 52 5.60 0.22
3 824 69 8.37 2.87× 10−5

4 852 90 10.56 4.29× 10−11

5 716 84 11.73 8.68× 10−13

6 834 23 2.76 9.24× 10−4

7 792 36 4.55 0.31
8 708 67 9.46 6.80× 10−7

9 821 31 3.78 0.06

Table 2: Percentage of errors at the 95% confidence level and the correspond-
ing p-values (upper if the percentage of errors is above 5% and lower if it is
below 5%) in experiments on the thyroid data set. The classes are: “primary
hyperthyroid” (0), “compensated hyperthyroid” (1), “normal” (2).

class size errors errors (%) p-value
0 166 40 24.10 7.87× 10−17

1 368 232 63.04 1.14× 10−201

2 6666 98 1.47 6.10× 10−54
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ures 10 and 11 show that this correction in the errors results in an increased
frequency of uncertain predictions; there is also a decrease in the number of
empty predictions.

It is natural to expect certain digits to be more easily confused with other
digits, and others easier to discriminate. For example with TCM, “0” digits
give on average a lower level of observed errors (0.84%) as compared with
the expected 5% (and 4.83% as given by MCM).

The results for the thyroid data set are even more extreme. In Tables 1
and 2 we give the p-values computed under the null hypothesis that the
probability of error is 5%. (By “upper p-value” we mean the probability that
the percentage of errors equals or exceeds the observed one, and similarly for
“lower p-values”.) Some of the p-values are extremely small; the evidence
against the null hypothesis is statistically highly significant.

5.4 Attribute-conditional performance

In our experiments we have not seen as gross failures in the TCM’s attribute-
conditional performance as those described in the previous subsection. It is
natural to test the attribute-conditional performance of TCM on the thyroid
data set since the USPS data set does not have any natural attributes to
conditions on: all attributes in it are of the same nature (the brightness
level of a pixel) and continuous. There are several natural attributes to
condition on in the thyroid data set, such as sex, the presence of tumor, etc.,
but TCM’s conditional performance was reasonable (the greatest anomaly
was for conditioning on the “tumor” attribute, where TCM’s error rate was
around 7%).

6 Conclusion

Our results have demonstrated another flexible dimension to the confidence
machine framework. This could be especially useful for medical applications
allowing the supervisor of the learning task to break prospective patients
into groupings of her choosing and to specify individual significance levels
for each.
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A Appendix: Proof sketch of Theorem 1

In the statement of Theorem 1 we did not describe explicitly the probability
distribution generating the classes kn = κ(n, zn); it is clear that, for each
k ∈ K, kn = k with probability

P{z ∈ Z : κ(n, z) = k}, (12)

and in conjunction with the statement of Theorem 1 this completes
the description of the probability distribution generating the sequence
k1, e1, k2, e2, . . . . Let Q be the probability distribution in K × {0, 1} accord-
ing to which a pair (k, e) ∈ K × {0, 1} is asserted to be generated: first k
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is generated with probability (12) and then e is set to 1 with probability
δk (and to 0 with probability 1 − δk). Our goal is to prove that (kn, en),
n = 1, 2, . . . , are generated according to Q∞.

We only explain the basic idea of the proof. To show that (k1, e1, . . . , kN , eN)
is distributed as QN (it is easy to get rid of the assumption of a fixed horizon
N), we use the standard idea of reversing the time. We can imagine that the
sample (z1, . . . , zN) is generated in two steps: first, the multiset *z1, . . . , zN+
is generated from some probability distribution (namely, the image of P
under the mapping (z1, z2, . . . ) 7→ *z1, . . . , zN+), and then the actual sample
(z1, . . . , zN) is chosen randomly from the set of all orderings of the multiset
*z1, . . . , zN+. Already the second step ensures that, conditionally on knowing
*z1, . . . , zN+ and kN (and, therefore, conditionally on knowing kN alone),
the bit eN is distributed as BδkN

. Indeed, roughly speaking (i.e., ignoring

ties and borderline effects), eN will be 1 if αN is among the NumkN
N δ largest

αi of its type, and the probability of this is δkN
since all type-preserving

permutations are equiprobable; when zN is disclosed, the value eN will be
settled; conditionally on knowing *z1, . . . , zN+, zN and kN−1 (and, therefore,
knowing *z1, . . . , zN−1+ and kN−1), eN−1 will be 1 with probability δkN−1

,
and so on.

The details are similar to those in [4].
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