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Abstract

The majority of theoretical work in machine learning is done under the as-
sumption of exchangeability: essentially, it is assumed that the examples are
generated from the same probability distribution independently. This pa-
per is concerned with the problem of testing the exchangeability assumption
in the on-line mode: examples are observed one by one and the goal is to
monitor on-line the strength of evidence against the hypothesis of exchange-
ability. We introduce the notion of exchangeability martingales, which are
on-line procedures for detecting deviations from exchangeability; in essence,
they are betting schemes that never risk bankruptcy and are fair under the
hypothesis of exchangeability. Some specific exchangeability martingales are
constructed using Transductive Confidence Machine. We report experimen-
tal results showing their performance on the USPS benchmark data set of
hand-written digits (known to be somewhat heterogeneous); one of them mul-
tiplies the initial capital by more than 1018; this means that the hypothesis
of exchangeability is rejected at the significance level 10−18.
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1 Introduction

The majority of theoretical results in machine learning (such as PAC theory
and statistical learning theory) depend on the exchangeability assumption,
so it is surprising that so little work has been done on testing this assump-
tion. Of course, testing is a traditional concern for statisticians, but the
usual statistical techniques do not work for high-dimensional data sets such
as the USPS data set (257 variables; see §4). This paper approaches the
problem of testing exchangeability building on the theory of Transductive
Confidence Machine (TCM), first introduced in [13] as a practically useful
way of attaching confidence measures to predictions. It was shown in [11]
that TCM is automatically well-calibrated under any exchangeable distribu-
tion when used in the on-line mode. In this paper we strengthen that result
showing (Theorem 1 on p. 6) that a modification of TCM, which we call “ran-
domised confidence transducer”, produces p-values that are independent and
distributed according to the uniform distribution U in [0, 1]. It turns out that
Theorem 1 is a convenient tool for testing the hypothesis of exchangeability.

We start, in §2, with the definition of exchangeability and stating for-
mally the problem of testing exchangeability on-line. TCM, in the form of
“confidence transducers”, is introduced in §3. In §4 we briefly describe the
USPS data set and a particular confidence transducer, the Nearest Neighbour
transducer, which works reasonably well for predicting the digits in the USPS
data set. In §5 we define a family of exchangeability martingales, which we
call “power martingales”, and report experimental results for a simple mix-
ture of NN power martingales (i.e., power martingales constructed from the
Nearest Neighbour transducer). We found that the simple mixture, which
is a non-negative exchangeability martingale that starts from 1, ends with
more than 1010 on the USPS data set. The probability of this event under the
null hypothesis of exchangeability is less than 10−10, which contrasts sharply
with typical significance levels, such as 1% or 5%, used in statistics. In §6 we
describe procedures for “tracking the best power martingale”; one particu-
lar, very simple, procedure performs considerably better than the best power
martingale on the USPS data set, achieving a final value exceeding 1018.
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2 Problem

In this section we set up our basic framework, making some important dis-
tinctions that have been glossed over so far: exchangeability vs. randomness,
martingales vs. supermartingales, etc.

In our learning protocol, Nature outputs elements z1, z2, . . ., called ex-
amples, of a measurable space Z. (It is often the case that each example
consists of two parts: an object and its label; we will not, however, need
this additional structure in the theoretical considerations of this paper.) The
hypothesis of randomness is that each example zn, n = 1, 2, . . ., is output ac-
cording to a probability distribution P in Z and the examples are independent
of each other (so the sequence z1z2 . . . is output by the power distribution
P∞). The almost identical hypothesis of exchangeability is that the examples
z1z2 . . . are output according to an exchangeable probability distributions Q
in Z∞, i.e., such that under Q the permuted examples zπ(1), . . . , zπ(n) are
distributed as the original examples z1, . . . , zn, for any n and any permuta-
tion π of {1, . . . , n}. It is clear a priori that the exchangeability hypothesis
is as weak as or weaker than the randomness hypothesis, since all power
distributions are exchangeable.

We are interested in testing the hypothesis of randomness/exchangeability
on-line: after observing each new example zn Learner is required to output
a number Mn reflecting the strength of evidence found against the hypothe-
sis. The most natural way to do this is to use non-negative supermartingales
starting from 1 (cf. [5]). Suppose first that we want to test the simple hypoth-
esis that z1, z2, . . . are generated from a probability distribution Q in Z∞. We
say that a sequence of random variables M0,M1, . . . is a Q-supermartingale
if, for all n = 0, 1, . . ., Mn is a measurable function of z1, . . . , zn (in particular,
M0 is a constant) and

Mn ≥ EQ (Mn+1 |M1, . . . ,Mn) . (1)

If M0 = 1 and infn Mn ≥ 0, Mn can be regarded as the capital process of a
player who starts from 1, never risks bankruptcy, at the beginning of each
trial n places a fair (cf. (1)) bet on the zn to be chosen by Nature, and
maybe sometimes throws money away (since (1) is an inequality). If such a
supermartingale M ever takes a large value, our belief in Q is undermined;
this intuition is formalized by Doob’s inequality, which implies

Q {∃n : Mn ≥ C} ≤ 1/C, (2)
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where C is an arbitrary positive constant.
When testing a composite hypothesis P (i.e., a family of probability distri-

butions), we will use P-supermartingales, i.e., sequences of random variables
M0,M1, . . . which are Q-supermartingales for all Q ∈ P simultaneously. If P
is the set of all power distributions P∞, P ranging over the probability dis-
tributions in Z, P-supermartingales will be called randomness supermartin-
gales. We will be even more interested in the wider family P consisting of
all exchangeable probability distributions Q in Z∞; in this case we will use
the term exchangeability supermartingales for P-supermartingales.

De Finetti’s theorem and the fact that Borel spaces are closed under
countable products (see, e.g., [4], Theorem 1.49 and Lemma B.41) imply
that each exchangeable distribution Q in Z∞ is a mixture of power distri-
butions P∞ provided Z is Borel. By Property A of conditional probability
distributions (see Appendix) the notions of non-negative randomness and
exchangeability supermartingales coincide in the Borel case. But even with-
out the assumption that Z is Borel, all randomness supermartingales are
exchangeability supermartingales.

In this paper we will also need randomised exchangeability martingales ;
these are sequences of measurable functions Mn(z1, θ1, . . . , zn, θn) (each ex-
ample zn is extended by adding a random number θn ∈ [0, 1]) such that, for
any exchangeable probability distribution Q in Z∞,

Mn = EQ×U∞ (Mn+1 |M1, . . . , Mn) , (3)

U being the uniform distribution in [0, 1]. We refrain from giving the analo-
gous definition of randomised randomness martingales; the discussion in the
previous paragraphs about the relation between randomness and exchange-
ability is also applicable in the randomised case (remember that Z × [0, 1]
is Borel when Z is). Doob’s inequality (2) is also true for non-negative ran-
domised exchangeability martingales starting from 1.

Remark Our definitions of martingale (3) and supermartingale (1) are
from [1]; a more modern approach (cf. [6, 5]) would be to replace the con-
dition “ |M1, . . . , Mn” in (3) and (1) by “ | Fn”, where Fn is the σ-algebra
generated by z1, . . . , zn in the case of (1) and z1, θ1, . . . , zn, θn in the case
of (3) (i.e., Fn represents all information available by the end of trial n).
To see how restrictive conditions (3) and (1) are, notice that the notions of
randomised exchangeability martingale and exchangeability supermartingale
become trivial when this apparently small change is made: the latter will be
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Figure 1: The final values, on the logarithmic (base 10) scale, attained by

the randomised NN power martingales M
(ε)
n on the (full) USPS data set.

non-increasing processes (M0 ≥ M1 ≥ · · ·) and the former will only gamble
on the random numbers θ1, θ2, . . . .

Now we can state the goal of this paper. We will construct non-negative
exchangeability supermartingales and randomised exchangeability martin-
gales that, starting from 1, take large final values on data sets (concentrating
on the USPS data set) deviating from exchangeability; as discussed earlier,
this will also provide us with randomness supermartingales and randomised
randomness martingales. Before this paper, it was not even clear that non-
trivial supermartingales of this kind exist; we will see that they not only exist,
but can attain huge final values starting from 1 and never risking bankruptcy.

3 Confidence Transducers

In this section we introduce the main tool for constructing exchangeability
martingales. A family of measurable functions {An : n ∈ N}, where An :
Zn → Rn for all n, N is the set of all positive integers and R is the set of
all real numbers (equipped with the Borel σ-algebra), is called an individual

4



0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
−30

−25

−20

−15

−10

−5

0

5

10

15

Figure 2: The final values for a narrower range of the parameter ε.

strangeness measure if, for any n ∈ N, any permutation π of {1, . . . , n}, any
(z1, . . . , zn) ∈ Zn, and any (α1, . . . , αn) ∈ Rn,

(α1, . . . , αn) = An(z1, . . . , zn) =⇒
(απ(1), . . . , απ(n)) = An(zπ(1), . . . , zπ(n)).

(4)

In other words,
An : (z1, . . . , zn) 7→ (α1, . . . , αn) (5)

is an individual strangeness measure if every αi is determined by the multi-
set *z1, . . . , zn+ and zi. (Sometime multisets are called “bags”, whence our
notation.) Individual strangeness measures will be our starting point when
constructing exchangeability martingales.

A randomised transducer is a function f of the type (Z× [0, 1])∗ → [0, 1].
It is called “transducer” because it can be regarded as mapping each input
sequence (z1, θ1, z2, θ2, . . .) in (Z×[0, 1])∞ into the output sequence (p1, p2, . . .)
of “p-values” defined by pn = f(z1, θ1, . . . , zn, θn), n = 1, 2, . . . . We say
that f is a randomised E/U-transducer if the output p-values p1p2 . . . are
always distributed according to the uniform distribution in [0, 1]∞, provided
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Figure 3: On-line performance of the randomised NN SM on the USPS data
set. The growth is shown on the logarithmic (base 10) scale: log Mn is plotted
against n. The final value attained is 2.18× 1010.

the input examples z1z2 . . . are generated by an exchangeable probability
distribution in Z∞.

We will construct randomised exchangeability martingales from individ-
ual strangeness measures in two steps, first extracting randomised E/U trans-
ducers from the latter: given an individual strangeness measure A, for each
sequence (z1, θ1, . . . , zn, θn) ∈ (Z× [0, 1])∗ define

f(z1, θ1, . . . , zn, θn) :=

#{i : αi > αn}+ θn#{i : αi = αn}
n

,
(6)

where αi, i = 1, 2, . . ., are computed from zi using A as per (5). Each
randomised transducer f that can be obtained in this way will be called a
randomised confidence transducer.

Theorem 1 Each randomised confidence transducer is a randomised E/U
transducer.
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Figure 4: On-line performance of the deterministic NN SM on the USPS
data set The final value is 9.13× 108.

A special case (labelled there as Theorem 2) of this theorem was used in [11]
as a tool for region prediction.

In a similar way we can define (deterministic) confidence transducers f :
given an individual strangeness measure A, for each sequence (z1, . . . , zn) ∈
Z∗ set

f(z1, . . . , zn) :=
#{i : αi ≥ αn}

n
,

where αi are computed as before. In general, a (deterministic) transducer
is a function f of the type Z∗ → [0, 1]; as before, we associate with f a
mapping from z1z2 . . . to the p-values p1p2 . . . (pn = f(z1, . . . , zn)). We say
that f is an E/U-supertransducer if p1 ≤ p1, p2 ≤ p2, . . . for some random
variables p1, p2, . . . distributed independently according to U , whatever the
exchangeable distribution generating z1, z2, . . . is. The following implication
of Theorem 1 is obvious:

Corollary 1 Each deterministic confidence transducer is an E/U super-
transducer.
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Figure 5: On-line performance of the randomised NN SM on a randomly
permuted USPS data set. The final value is 0.0117.

4 USPS Data Set and Nearest Neighbour

Transducers

The USPS data set (described in, e.g., [7]) consists of 7291 training examples
and 2007 test examples; we merged the training set and the test set, in this
order, obtaining what we call the full USPS data set (or just USPS data set).
Each example consists of an image (16× 16 matrix of pixels) and its label (0
to 9). In region prediction (e.g., [11]) it is usually beneficial to pre-process
the images; no pre-processing is done in this paper.

It is well-known that the USPS data set is heterogeneous; in particular,
the training and test sets seem to have different distributions. (See, e.g., [2].)
In the next two sections we will see the huge scale of this heterogeneity.

It was shown in [12] that a Nearest Neighbours TCM provides a uni-
versally optimal, in an asymptotic sense, on-line algorithm for predicting
classifications under the assumption of exchangeability. On the empirical
side, Figures 1 and 2 in [11] show that a Nearest Neighbour TCM performs
reasonably well on the USPS data set. Therefore, it is natural to expect
that the Nearest Neighbour(s) idea will also perform well in the problem of
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Figure 6: On-line performance of the randomised NN SJ with parameters
(R, J) = (1%, 1�) on the USPS data set. The final value is 4.71× 1018.

testing exchangeability.
We define the Nearest Neighbour (NN) individual strangeness measure as

mapping (5) where

αi :=
minj 6=i:yj=yi

d(xi, xj)

minj 6=i:yj 6=yi
d(xi, xj)

; (7)

in this formula, xi ∈ R256 is the image in a USPS example zi, yi ∈ {0, 1, . . . , 9}
is the corresponding label (so that zi = (xi, yi)), and d is the Euclidean
distance. Intuitively, an image is considered strange if it is in the middle
of images labelled in a different way and is far from the images labelled
in the same way. The corresponding confidence transducer (randomised or
deterministic) will be called the NN transducer.

5 Power Martingales

In this and next sections we discuss the second step in transforming individual
strangeness measures into (randomised) exchangeability (super)martingales:
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Figure 7: On-line performance of the deterministic NN SJ with parameters
(1%, 1�) on the USPS data set. The final value is 1.01× 1018.

constructing the latter from (randomised) E/U (super)transducers. To this
end we use the procedure suggested in [9].

Since
∫ 1

0
εpε−1dp = 1, the random variables

M (ε)
n :=

n∏
i=1

(
εpε−1

i

)
, (8)

where pn are the p-values output by a randomised confidence transducer,
will be a non-negative randomised exchangeability martingale with initial
value 1; this family of martingales, indexed by ε ∈ [0, 1], will be called the
randomised power martingales.

When applied to the NN transducer, the family of randomised power
martingales (randomised NN power martingales) might at first not look very
promising (Figure 1), but if we concentrate on a narrower range of ε (Fig-
ure 2), it becomes clear that the final values for some ε are very large.

To eliminate the dependence on ε, we may use the randomised exchange-
ability martingale

Mn :=

∫ 1

0

M (ε)
n dε, (9)
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Figure 8: On-line performance of the randomised NN SJ with parameters
(1%, 1�) on the randomly permuted USPS data set. The final value is
0.0142.

which is called the simple mixture of M
(ε)
n . The simple mixture of randomised

NN power martingales (which will also be referred to as the randomised NN
SM ) usually ends up with more than 1010; a typical trajectory is shown in
Figure 3. This figure and Figures 5, 6, 8 below are affected by statistical
variation (since the outcome depends on the random numbers θi actually
generated), but the dependence is not too heavy. For example, in the case of
the randomised NN SM the final values are: 2.18× 1010 (MATLAB pseudo-
random numbers generator started from state 0), 1.32×1010 (state 1), 1.60×
1010 (state 2),. . . ; in what follows we only give results for initial state 0.

As clear from Figure 3, the difference between the training and test sets
is not the only anomaly in the USPS data set: the rapid growth of the
randomised NN SM starts already on the training set.

If pn are output by the deterministic NN transducer, we call (8) the NN
power supermartingales and we refer to (9) as the deterministic NN SM. As
Figure 4 shows, the growth rate of the latter is slightly less than that of its
randomised counterpart.

The result for a randomly permuted USPS data set is shown in Figure 5.
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Figure 9: On-line performance of the deterministic NN SJ with parame-
ters (1%, 1�) on the randomly permuted USPS data set. The final value
is 0.646.

A low final value (about %) results from NN SM’s futile attempts to gam-
ble against a random sequence; to make possible spectacular gains against
highly untypical sequences such as the original USPS data set, it has to
underperform against random sequences.

6 Tracking the Best Power Martingale

The simple mixture of the previous section has modest goals; the best it can
do is to approximate the performance of the best power martingale. In this
section we will see that it is possible to “track” the best power martingale, so
that the resulting performance considerably exceeds that of the best “static”
martingale (8).

We first generalise (8) as follows: for each ε = ε1ε2 . . . ∈ [0, 1]∞, we set

M (ε)
n :=

n∏
i=1

(
εip

εi−1
i

)
. (10)
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Figure 10: On-line performance of the deterministic NN SJ with parameters
(1%, 1�) on the USPS data set. The final value is 1.48× 1017.

For any probability distribution µ in [0, 1]∞, define

Mn :=

∫

[0,1]∞
M (ε)

n µ(dε). (11)

It is convenient to specify µ in terms of the distribution of the coordinate
random variables εn (but of course, since we integrate over µ, this does not in-
volve any extra randomisation; in particular, the mixture (11) is deterministic
if pn are generated by a deterministic confidence transducer). One possible
µ is generated by the following Sleepy Jumper automaton. The states of
Sleepy Jumper are elements of the Cartesian product {awake, asleep}× [0, 1].
Sleepy Jumper starts from the state (asleep, 1); when he is in a state (s, ε),
his transition function prescribes that:

� if s = asleep, he moves to the state (awake, ε) (“wakes up”) with prob-
ability R (R ∈ [0, 1] is one of two parameters of the automaton) and
stays in the state (asleep, ε) with probability 1−R;

� if s = awake, he moves to the state (s, ε), where ε and s are generated
independently as follows: ε = ε with probability 1 − J (J ∈ [0, 1],
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the “probability of jumping”, is the other parameter) and ε is chosen
randomly from U with probability J ; s = awake with probability 1−R
and s = asleep with probability R.

The output of the Sleepy Jumper automaton starting from (s1, ε̃1) =
(passive, 1) and further moving through the states (s2, ε̃2), (s3, ε̃3), . . . is
the sequence ε1, ε2, . . ., where

εn :=

{
ε̃n if sn = awake
1 otherwise.

The probability distribution µ of ε1, ε2, . . . generated in this way defines,
by (11), a randomised exchangeability martingale (or exchangeability super-
martingale), which we call the randomised Sleepy Jumper martingale (resp.
Sleepy Jumper supermartingale); if pn are produced by the NN transducer
(randomised or deterministic, as appropriate), we refer to these processes as
the randomised/deterministic NN SJ.

Figures 6 and 7 show the performance of the randomised and deterministic
NN SJ for parameters R = 0.01 and J = 0.001. When applied to the
randomly permuted USPS data set, the randomised NN SJ’s performance is
as shown in Figure 8. One way to improve the performance against a random
data set is to decrease the jumping rate: if J = 0.0001, we obtain a much
better performance (Figure 9), even for a deterministic NN SJ. It is easy
to see the cause of the improvement: when J = 0.0001, the µ-measure of
supermartingales (10) that make no jumps on the USPS data set will be at
least 0.99999298 > e−1. The performance on the original data set deteriorates
(Figure 10) but not drastically.

Remark The approach of this section is reminiscent of “tracking the best
expert” in the theory of prediction with expert advice. A general “Aggre-
gating Algorithm” (AA) for merging experts was introduced in [8]; in the
context of this section, the experts are the power martingales and the mixing
operation (9) plays the role of (and is a special case of) the AA. Herbster
and Warmuth [3] showed how to extend the AA to “track the best expert”,
to try and outperform even the best static expert. Vovk [10] noticed that
Herbster and Warmuth’s algorithm is in fact a special case of the AA, when it
is applied not to the original experts (in our case, (8)) but to “superexperts”
(in our case, (10)).
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Of course, there are other ideas that can used when combining (10); e.g.,
it would be natural to allow ε not only occasionally to jump randomly but
also to allow it to drift slowly.
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Appendix

We will use the notation EF for the conditional expectation w.r. to a σ-
algebra F ; if necessary, the underlying probability distribution will be given
as an upper index. Similarly, PF will stand for the conditional probability w.r.
to F . In this paper we use the following properties of conditional expectation:

A. If F is a σ-algebra, ξ is a non-negative random variable, and a prob-
ability distribution P is a mixture of probability distributions Pθ,
P =

∫
Pθµ(dθ), then EP

F(ξ) =
∫
EPθ
F (ξ)µ(dθ) a.s.

B. If G and F are σ-algebras, G ⊆ F , ξ and η are bounded F -measurable
random variables, and η is G-measurable, EG(ξη) = η EG(ξ) a.s.

C. If G and F are σ-algebras, G ⊆ F , and ξ is a random variable,

EG(EF(ξ)) = EG(ξ) a.s.; in particular, E(EF(ξ)) = E(ξ).

The first property is obvious, and the other two are well-known (see, e.g., [6],
§II.7.4).

Proof of Theorem 1

This proof is a generalization of the proof of Theorem 1 in [11], with the same
basic idea: to show that (p1, . . . , pN) is distributed as UN (it is easy to get
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rid of the assumption of a fixed horizon N), we use the old idea of reversing
the time. Imagine that the sample (z1, . . . , zN) is generated in two steps:
first, the multiset *z1, . . . , zN+ is generated from some probability distribution
(namely, the image of the exchangeable distribution Q generating z1, z2, . . .
under the mapping (z1, z2, . . .) 7→ *z1, . . . , zN+), and then the actual sample
(z1, . . . , zN) is chosen randomly from the set of all orderings of *z1, . . . , zN+.
Already the second step ensures that, conditionally on knowing *z1, . . . , zN+
(and, therefore, unconditionally), the sequence (pN , . . . , p1) is distributed as
UN . Indeed, roughly speaking (i.e., ignoring borderline effects), pN will be
N−1 times the rank of αN in the set {αi : i = 1, . . . , N}, and so distributed, at
least approximately, as U , since all permutations are equiprobable; when zN is
disclosed, the value pN will be settled; conditionally on knowing *z1, . . . , zN+
and zN (and, therefore, knowing *z1, . . . , zN−1+), pN−1 will also be distributed
as U , and so on.

We start the formal proof by defining the σ-algebra Gn, n = 0, 1, 2, . . ., as
the collection of all measurable sets E ⊆ (Z× [0, 1])∞ which satisfy

(z1, θ1, z2, θ2, . . .) ∈ E =⇒
(zπ(1), θ̃1, . . . , zπ(n), θ̃n, zn+1, θn+1, zn+2, θn+2, . . .) ∈ E

for any permutation π of {1, . . . , n} and any sequences z1z2 . . . ∈ Z∞,
θ1θ2 . . . ∈ [0, 1]∞, θ̃1 . . . θ̃n ∈ [0, 1]n. In particular, G0 (the most informative σ-
algebra) coincides with the original σ-algebra on (Z× [0, 1])∞; G0 ⊇ G1 ⊇ · · ·.

Fix a randomised confidence transducer f ; it will usually be left implicit
in our notation. Let pn be the random variable f(z1, θ1, . . . , zn, θn) for each
n = 1, 2, . . .; P will refer to the probability distribution Q×U∞ (over examples
zn and random numbers θn) and E to the expectation w.r. to P. The proof
will be based on the following lemma.

Lemma 1 For any trial n and any δ ∈ [0, 1],

PGn {pn ≤ δ} = δ. (12)

Proof This coincides with Lemma 1 in [11], since errn = I{pn≤δ} (assuming
the random numbers τn used by rTCM in [11] are 1 − θn), where IE means
the indicator of a set E.

The other basic result that we will need is the following lemma (whose
simple proof is omitted).

17



Lemma 2 For any trial n = 1, 2, . . ., pn is Gn−1-measurable.

Fix temporarily positive integer N . First we prove that, for any n =
1, . . . , N and any δ1, . . . , δn ∈ [0, 1],

PGn{pn ≤ δn, . . . , p1 ≤ δ1) = δn · · · δ1. (13)

The proof is by induction in n. For n = 1, (13) immediately follows from
Lemma 1. For n > 1 we obtain, making use of Lemmas 1 and 2, properties B
and C of conditional expectations, and the inductive assumption:

PGn{pn ≤ δn, . . . , p1 ≤ δ1)

= EGn

(
EGn−1

(
I{pn≤δn}I{pn−1≤δn−1,...,p1≤δ1}

))

= EGn

(
I{pn≤δn} EGn−1

(
I{pn−1≤δn−1,...,p1≤δ1}

))

= EGn

(
I{pn≤δn}δn−1 · · · δ1

)
= δnδn−1 · · · δ1

almost surely.
By property C, (13) immediately implies

P {pN ≤ δN , . . . , p1 ≤ δ1} = δN · · · δ1.

Therefore, we have proved that the distribution of the random sequence
p1p2 . . . ∈ [0, 1]∞ coincides with U∞ on the σ-algebra FN generated by the
first N coordinate random variables p1, . . . , pN . It is well known (see, e.g., [6],
Theorem II.3.3) that this implies that the distribution of p1p2 . . . coincides
with U∞ on all measurable sets in [0, 1]∞.
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