
Self-calibrating
Probability Forecasting

Vladimir Vovk, Glenn Shafer and Ilia Nouretdinov

praktiqeskie vyvody
teorii vero�tnoste�
mogut byt~ obosnovany
v kaqestve sledstvi�

gipotez o predel~no�
pri dannyh ograniqeni�h

slo�nosti izuqaemyh �vleni�

On-line Compression Modelling Project

Working Paper #9

7 June, 2003

Project web site:
http://vovk.net/kp



Abstract

The problem of probability forecasting is an extension of the standard classifi-
cation problem; the latter’s goal of finding the “best” label for the test object
is replaced by the goal of finding conditional probabilities, given the test ob-
ject, for possible values of the test object’s label. We introduce a new class of
algorithms for on-line probability forecasting which we call “Venn probability
machines” and study under the assumption of randomness (the object/label
pairs are independent and identically distributed). The most important ad-
vantage of these algorithms is that they are automatically well-calibrated in
a strong non-asymptotic sense. Our experimental results demonstrate that
a 1-Nearest Neighbour Venn probability machine performs reasonably well
on a standard benchmark data set, and one of our theoretical results as-
serts that a simple Venn probability machine asymptotically approaches the
true conditional probabilities regardless, and without knowledge, of the true
probability distribution generating the examples.
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1 Introduction

We are interested in the on-line version of the problem of probability forecast-
ing: we observe pairs of objects and labels sequentially, and after observing
the nth object xn the goal is to give a probability distribution pn for its label;
as soon as pn is output, the label yn of xn is disclosed and can be used for com-
puting future probability forecasts. A good review of early work in this area
is Dawid [2]. In this introductory section we will assume that yn ∈ {0, 1}; we
can then take pn to be a real number from the interval [0, 1] (the probability
that yn = 1 given xn); our exposition here will be very informal.

The standard view ([2], pp. 213–216) is that the quality of probability
forecasting systems has two components: “reliability” and “resolution”. At
the crudest level, reliability requires that the forecasting system should not
lie, and resolution requires that it should say something useful. To be slightly
more precise, consider the first n forecasts pi and the actual labels yi.

The most basic test is to compare the overall average forecast probability
pn := n−1

∑n
i=1 pi with the overall relative frequency yn := n−1

∑n
i=1 yi of 1s

among yi. If pn ≈ yn, the forecasts are “unbiased in the large”.
A more refined test would look at the subset of i for which pi is close to

a given value p∗, and compare the relative frequency of yi = 1 in this subset,
say yn(p∗), with p∗. If

yn(p∗) ≈ p∗ for all p∗, (1)

the forecasts are “unbiased in the small”, “reliable”, “valid”, or “well-
calibrated”; in later sections, we will use “well-calibrated”, or just “cali-
brated”, as a technical term. Forecasting systems that pass this test at least
get the frequencies right; in this sense they do not lie.

It is easy to see that there are reliable forecasting systems that are virtu-
ally useless. For example, the definition of reliability does not require that the
forecasting system pay any attention to the objects xi. In another popular
example, the labels follow the pattern

yi =

{
1 if i is odd
0 otherwise.

The forecasts pi = 0.5 are reliable, at least asymptotically (0.5 is the right
relative frequency) but not as useful as p1 = 1, p2 = 0, . . . ; the “resolution”
(which we do not define here) of the latter forecasts is better.

In this paper we construct forecasting systems that are automatically
reliable. To achieve this, we allow our prediction algorithms to output sets
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of probability distributions Pn instead of single distributions pn; typically the
sets Pn will be small (see §5).

This paper develops the approach of [9], [10] and [12], which show that
it is possible to produce valid, asymptotically optimal, and practically useful
p-values; the p-values can be then used for region prediction. Disadvantages
of p-values, however, are that their interpretation is less direct than that
of probabilities and that they are easy to confuse with probabilities; some
authors have even objected to any use of p-values (see, e.g., [1]). In this
paper we use the methodology developed in the previous papers to produce
valid probabilities rather than p-values.

2 Probability forecasting and calibration

From this section we start rigorous exposition. Let P(Y) be the set of all
probability distributions in a measurable space Y. We use the following
protocol in this paper:

Multiprobability forecasting
Players: Reality, Forecaster
Protocol:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Forecaster announces Pn ⊆ P(Y).
Reality announces yn ∈ Y.

In this protocol, Reality generates examples zn = (xn, yn) consisting of two
parts, objects xn and labels yn. After seeing the object xn Forecaster is
required to output a prediction for the label yn. The usual probability fore-
casting protocol requires that Forecaster output a probability distribution;
we relax this requirement by allowing him to output a family of probability
distributions (and we are interested in the case where the families Pn become
smaller and smaller as n grows).

In this paper we make the simplifying assumption that the label space Y
is finite; in many informal explanations it will be assumed binary, Y = {0, 1}.
To avoid unnecessary technicalities, we will also assume that the families Pn

chosen by Forecaster are finite and have no more than K elements; they will
be represented by a list of length K (elements in the list can repeat). A
probability machine is a measurable strategy for Forecaster in our protocol,
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where at each step he is required to output a sequence of K probability
distributions.

The problem of calibration is usually treated in an asymptotic framework.
Typical asymptotic results, however, do not say anything about finite data
sequences; therefore, in this paper we will only be interested in the non-
asymptotic notion of calibration.

The n-space Πn is the set of all sequences p1y1 . . . pnyn such that pi ∈
P(Y) and yi ∈ Y, i = 1, . . . , n. Intuitively, such sequences p1y1 . . . pnyn arise
when a sequence y1 . . . yn is predicted using a probability distribution: pi is
the conditional distribution for yi given all the previous examples z1 . . . zi−1

and the new object xi. An n-event is a measurable subset of Πn. The
capacity C(E) of an n-event E is defined as the supremum of CR(E) over
all probability distributions R in Zn and all choices of regular conditional
distributions under R, where CR(E) is the R-probability that p1y1 . . . pnyn

will belong to E, pi being the chosen regular conditional distribution of yi

under R given z1, . . . , zi−1 and xi. Intuitively, the smallness of C(E) means
that we do not expect E to happen if pi are conditional probabilities.

A calibration n-event is an n-event E that is invariant w.r. to permuta-
tions: if

(p1y1 . . . pnyn) ∈ E,

then
(pπ(1)yπ(1) . . . pπ(n)yπ(n)) ∈ E

for any permutation π : {1, . . . , n} → {1, . . . , n}. (This definition is moti-
vated by the fact that the requirement (1) is invariant w.r. to permutations.
Effectively, a calibration n-event is a set of n-bags1 of elements of P(Y)×Y.)
Intuitively, miscalibration is evidenced by the happening of a calibration n-
event with small C(E) (for an example of such an event, see (2) below).

An n-multievent is a measurable set of sequences P1y1 . . . Pnyn, where
each Pi is a list of K probability distributions in Y and yi ∈ Y, i = 1, . . . , n,
which is invariant under permutations of each Pi (we are not interested in
the order in which the elements of Pi are listed). The capacity C(E) of an

1By “n-bag” we mean a collection of n elements, not necessarily distinct. “Bag” and
“multiset” are synonymous, but we prefer the former term in order not to overload the
prefix “multi”.
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n-multievent E is

C


 ⋃

ω∈{1,...,K}n

Eω


 ,

where: Eω is the set of all sequences P1(ω1)y1 . . . Pn(ωn)yn; P1y1 . . . Pnyn

ranges over the sequences in E; and Pi(ωi) stands for the ωith component
of the sequence Pi. An n-multievent is a calibration n-multievent if it is
invariant w.r. to permutations, in the same sense as for calibration n-events.

We say that a probability machine is finitarily calibrated if, for any n, any
probability distribution q in Z, and any calibration n-multievent E, the qn-
probability that the sequence P1y1 . . . Pnyn of Forecaster and Reality’s moves
belongs to E never exceeds C(E). Intuitively, a probability machine is fini-
tarily calibrated if we can treat the multiprobabilities it outputs as containing
the genuine conditional probabilities, as far as calibration is concerned.

Remark To make our finitary notion of calibration clearer, we will give
a simple example of a calibration n-event and its modification providing a
simple example of a calibration n-multievent, with upper bounds on their
capacity. For any ε > 0 and n, the capacity of the calibration n-event

1

n

n∑
i=1

(xi − pi) ≥ ε (2)

does not exceed e−2ε2n (by the Hoeffding-Azuma inequality [3]); this implies
that the capacity of the calibration n-multievent

1

n

n∑
i=1

inf
p∈Pi

(xi − p) ≥ ε

does not exceed e−2ε2n.

3 Self-calibrating probability forecasting

Now we will describe a general algorithm for multiprobability forecasting.
Let N be the sets of all positive integer numbers. A sequence of measurable
functions An : Zn → Nn, n = 1, 2, . . . , is called a taxonomy if, for any
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n ∈ N, any permutation π of {1, . . . , n}, any (z1, . . . , zn) ∈ Zn, and any
(α1, . . . , αn) ∈ Nn,

(α1, . . . , αn) = An(z1, . . . , zn) =⇒ (απ(1), . . . , απ(n)) = An(zπ(1), . . . , zπ(n)).

In other words,
An : (z1, . . . , zn) 7→ (α1, . . . , αn) (3)

is a taxonomy if every αi is determined by the bag *z1, . . . , zn+ and zi. The
Venn probability machine associated with (An) is the probability machine
which outputs the following K = |Y| probability distributions py, y ∈ Y,
at the nth step: complement the new object xn by the postulated label y;
consider the division of *z1, . . . , zn+, where zn is understood (only for the
purpose of this definition) to be (xn, y), into groups (or types) according to
the values of An (i.e., zi and zj are assigned to the same group if and only if
αi = αj, where the αs are defined by (3)); find the empirical distribution py

of the labels in the group containing the nth example zn = (xn, y). A Venn
probability machine (VPM) is the Venn probability machine associated with
some taxonomy.

Theorem 1 Any Venn probability machine is finitarily calibrated.

It is clear that VPM depends on the taxonomy only through the way it
splits the examples z1, . . . , zn into groups; therefore, we may specify only the
latter when constructing specific VPMs.

Remark The notion of VPM is a version of Transductive Confidence Ma-
chine (TCM) introduced in [11] and [7], and Theorem 1 is a version of The-
orem 1 in [9]; as we already mentioned, the main difference between VPM
and TCM is that the former replaces the p-values used by TCM with prob-
abilities. Paper [9] shows that the conclusion of its Theorem 1 is also true
for a computationally efficient modification of TCM, Inductive Confidence
Machine. An inductive version of VPM can also be defined and Theorem 1
can be extended to cover this version.

4 Discussion of the Venn probability machine

In this somewhat informal section we will discuss the intuitions behind VPM,
considering only the binary case Y = {0, 1}. We start with the almost trivial
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Bernoulli case, where the objects xi are absent,2 and our goal is to predict, at
each step n = 1, 2, . . . , the new label yn given the previous labels y1, . . . , yn−1.
The most naive probability forecast is pn = k/(n−1), where k is the number
of 1s among the first n − 1 labels. (Often “regularized” forms of k/(n − 1),
such as Laplace’s rule of succession (k + 1)/(n + 1), are used.)

In the Bernoulli case there is only one natural VPM: the multiprobability
forecast for yn is {k/n, (k +1)/n}. Indeed, since there are no objects xn, it is
natural to take the one-element taxonomy An at each step, and this produces
the VPM pn = {k/n, (k + 1)/n}. It is clear that the diameter 1/n of Pn for
this VPM is the smallest achievable.

Now let us consider the case where xn are present. The probability fore-
cast k/(n − 1) for yn will usually be too crude, since the known population
z1, . . . , zn−1 may be very heterogeneous. A reasonable statistical forecast
would take into account only objects xi that are similar, in a suitable sense,
to xn. A simple modification of the Bernoulli forecast k/(n−1) is as follows:

1. Split the available objects x1, . . . , xn into a number of types.

2. Output k′/n′ as the predicted probability that yn = 1, where n′ is the
number of objects among x1, . . . , xn−1 of the same type as xn and k′ is
the number of objects among those n′ that are labelled as 1.

At the first stage, a delicate balance has to be struck between two contra-
dictory goals: the types should be as large as possible (to have a reasonable
sample size for estimating probabilities); the types should be as homoge-
neous as possible. This problem is sometimes referred to as the “reference
class problem”; according to Kılınç [4], John Venn was the first to formulate
and analyse this problem with due philosophical depth.

The procedure offered in this paper is a simple modification of the stan-
dard procedure described in the previous paragraph:

0. Consider the two possible completions of the known data

(z1, . . . , zn−1, xn) = ((x1, y1), . . . , (xn−1, yn−1), xn) :

in one (called the 0-completion) xn is assigned label 0, and in the other
(called the 1-completion) xn is assigned label 1.

2Formally, this correspond in our protocol to the situation where |X| = 1, and so xn,
although nominally present, do not carry any information.
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1. In each completion, split all examples z1, . . . , zn−1, (xn, y) into a number
of types, so that the split does not depend on the order of examples
(y = 0 for the 0-partition and y = 1 for the 1-partition).

2. In each completion, output k′/n′ as the predicted probability that yn =
1, where n′ is the number of examples among z1, . . . , zn−1, (xn, y) of the
same type as (xn, y) and k′ is the number of examples among those n′

that are labelled as 1.

In this way, we will have not one but two predicted probabilities that yn = 1;
but in practically interesting cases we can hope that these probabilities will
be close to each other (see the next section).

Venn’s reference class problem reappears in our procedure as the problem
of avoiding over- and underfitting. A taxonomy with too many types means
overfitting; it is punished by the large diameter of the multiprobability fore-
cast (importantly, this is visible, unlike the standard approaches). Too few
types means underfitting (and poor resolution).

Important advantages of our procedure over the naive procedure are: our
procedure is self-calibrating; there exists an asymptotically optimal VPM
(see §6); we can use labels in splitting examples into types (this will be used
in the next section).

5 Experiments

In this section, we will report the results for a natural taxonomy applied to the
well-known USPS data set of hand-written digits; this taxonomy is inspired
by the 1-Nearest Neighbour algorithm. First we describe the taxonomy, and
then the way in which we report the results for the VPM associated with
that taxonomy.

Since the data set is relatively small (9298 examples in total), we have
to use a crude taxonomy: two examples are of the same type if their nearest
neighbours have the same label; therefore, the taxonomy consists of 10 types.
The distance between two examples is defined as the Euclidean distance
between their objects (which are 16× 16 matrices of pixels and represented
as points in R256).

The algorithm processes the nth object xn as follows. First it creates the
10× 10 matrix A whose entry Ai,j, i, j = 0, . . . , 9, is computed by assigning
i to xn as label and finding the fraction of examples labelled j among the
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examples in the bag *z1, . . . , zn−1, (xn, i)+ of the same type as (xn, i). The
quality of a column of this matrix is its minimum entry. Choose a column
(called the best column) with the highest quality; let the best column be
jbest. Output jbest as the prediction and output

[
min

i=0,...,9
Ai,jbest

, max
i=0,...,9

Ai,jbest

]

as the interval for the probability that this prediction is correct. If the latter
interval is [a, b], the complementary interval [1− b, 1− a] is called the error
probability interval. In Figure 1 we show the following three curves: the
cumulative error curve

En :=
n∑

i=1

erri,

where erri = 1 if an error is made at step i and erri = 0 otherwise; the
cumulative lower error probability curve

Ln :=
n∑

i=1

li,

and the cumulative upper error probability curve

Un :=
n∑

i=1

ui,

where [li, ui] is the error probability interval output by the algorithm for the
label yi; the values En, Ln and Un are plotted against n. The plot confirms
that the error probability intervals are calibrated.

6 Universal Venn probability machine

The following result asserts the existence of a universal VPM (it can be easily
constructed using the histogram approach to probability estimation [3]).

Theorem 2 There exists a Venn probability machine such that, if the exam-
ples are generated from p∞ and A is an open set in P(Z) containing p, from
some n on we will have Pn ⊆ A, where Pn are the multiprobabilities produced
by the Venn probability machine.
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Figure 1: On-line performance of the 1-Nearest Neighbour VPM on the USPS
data set (9298 hand-written digits, randomly permuted). The dashed line
shows the cumulative number of errors En and the solid ones the cumulative
upper and lower error probability curves Un and Ln. The mean error EN/N
is 0.0425 and the mean probability interval (1/N)[LN , UN ] is [0.0407, 0.0419],
where N = 9298 is the size of the data set. This figure is not significantly
affected by statistical variation (due to the random choice of the permutation
of the data set).

This theorem shows that not only all VPMs are reliable but some of them
also have asymptotically optimal resolution. The version of this result for
p-values was proved in [10]; it is interesting that Theorem 2 is much easier
to prove.

7 Comparisons

In this section we briefly and informally compare this paper’s approach to
standard approaches in machine learning.

Two most important approaches to analysis of machine-learning algo-
rithms are Bayesian learning theory and PAC theory (the recent mixture,
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the PAC-Bayesian theory, is part of PAC theory in its assumptions). This
paper is in a way intermediate between Bayesian learning (no empirical jus-
tification for probabilities is required) and PAC learning (the goal is to find
or bound the true probability of error, not just to output calibrated proba-
bilities). An important difference of our approach from the PAC approach is
that we are interested in the conditional distribution of the label given the
new object, whereas PAC theory (even in its “data-dependent” version, as
in [5, 8, 6]) tries to estimate the unconditional probability of error.
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