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Abstract

We consider the on-line predictive version of the standard problem of linear
regression; the goal is to predict each consecutive response given the correspon-
ding explanatory variables and all the previous observations. We are mainly
interested in prediction intervals rather than point predictions. The standard
treatment of prediction intervals in linear regression analysis has two drawbacks:
(1) the classical prediction intervals guarantee that the probability of error is
equal to the nominal significance level ε, but this property per se does not im-
ply that the long-run frequency of error is close to ε; (2) it is not suitable for
prediction of complex systems as it assumes that the number of observations
exceeds the number of parameters. We state a general result showing that in
the on-line protocol the frequency of error for the classical prediction intervals
does equal the nominal significance level, up to statistical fluctuations. We
also describe alternative regression models in which informative prediction in-
tervals can be found before the number of observations exceeds the number of
parameters. One of these models, which only assumes that the observations
are independent and identically distributed, is popular in machine learning but
greatly underused in the statistical theory of regression.
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1 Introduction

Let yn, n = 1, 2, . . ., be the sequence of response variables to be predicted,
and let xn = (xn,1, . . . , xn,K), n = 1, 2, . . ., be the corresponding vectors of
explanatory variables. The standard assumption of linear regression analysis is
that the explanatory vectors xn are deterministic and

yn = α+ β · xn + ξn, (1)

where α is an unknown coefficient, β ∈ RK is an unknown vector of coefficients,
and ξn, n = 1, 2, . . ., are IID (independent and identically distributed) Gaussian
random variables with mean 0 and unknown variance σ2 > 0 (we will write
ξn ∼ N(0, σ2)). The model (1) will be called the Gauss linear model. It is the
standard textbook model.

The standard classes of problems associated with the Gauss linear model are
parameter estimation, testing hypotheses about parameters, and prediction. In
this paper we will be concerned only with prediction, mainly in the form of
prediction intervals rather than point predictions. (It is natural to concentrate
on prediction as one of the models that we consider, the IID model, is non-
parametric.)

A major drawback of the Gauss linear model is that the corresponding pre-
diction intervals are uninformative (i.e., coincide with the whole real line) unless
the number of observations exceeds the number of parameters. The responses
of a complex system cannot be realistically expected to be modelled using a
small number of parameters, whereas the number of observations can be very
limited. This motivates consideration of three other models in this paper, none
of which requires that the number of observations should exceed the number of
parameters.

Perhaps the most important of these models is what we call the IID model :
it is only assumed that the sequence of pairs (xn, yn) is IID. This model is non-
parametric, effectively involving infinitely many parameters. Despite this, the
model does allow one to obtain informative prediction intervals. The IID model,
however, also has a fundamental limitation: informative prediction intervals
become possible only when the number of observations reaches 1/ε, where ε is
the chosen significance level.

Our third regression model combines the assumption (1) with the assumption
that xn are independent (between themselves and of ξ1, ξ2, . . .) and identically
distributed Gaussian random vectors. We call it the MVA model, with MVA
referring to “multivariate analysis”. It has also been widely discussed in the
statistical literature; e.g., Sampson’s [16] “two regressions” refers to the Gauss
linear model and the MVA model. This model is narrower than both Gauss
linear and IID models, and its strong assumptions ensure that informative pre-
diction intervals can be produced almost right away.

Finally, we consider the combination of the Gauss linear and IID models,
which we call the IID–Gauss model : in addition to (1) we assume that the expla-
natory vectors xn, n = 1, 2, . . ., are random and IID (not necessarily Gaussian,
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Figure 1: The four models considered in this paper (the three main models are
given in boldface).

as in the MVA model) and that the sequence ξ1, ξ2, . . . is independent of the
explanatory vectors. This model, however, appears to be of secondary impor-
tance. Empirically, it allows informative prediction intervals at significance level
ε soon after the number of observations exceeds the minimum of 1/ε and the
number of parameters.

All the models considered in this paper are shown in Figure 1. In this paper
we begin (in Section 5) with the IID model. This is the most common mo-
del used in modern day statistics and it does not involve the often unrealistic
assumption that the noise variables ξn are Gaussian or that the explanatory
vectors xn are Gaussian. An important advantage of the classical Gauss linear
model, considered in Section 6, is that the explanatory vectors are not assumed
to be IID (in other words, no “random design” is assumed). This model is
essentially equivalent to making no assumptions whatsoever about the distribu-
tion of xn and assuming that the ξn in (1) are IID and distributed as N(0, σ2)
conditional on x1,x2, . . . . The Gauss linear model (understood in this way) and
the IID model are not comparable between themselves, but both contain the
other two models: the IID–Gauss model (Section 8), which is the intersection of
the IID and Gauss linear models, and the MVA model (Section 7), which ma-
kes the further assumption that the explanatory vectors are Gaussian. These
relationships are shown in Figure 1 with the arrows leading from more general
to more specific models.

Fisher ([9], Section IV.3) emphatically defended the use of the Gauss linear
model even in the case where the distribution of the explanatory vectors is
known (with or without parameters). There is also a view in the literature that
the Gauss linear model and the MVA model are “essentially equivalent” (for a
review of some results in this direction, see [16]). Our conclusion, however, is
similar to Brown’s [2]: when the MVA model is true, it can be far more useful
for prediction; in particular, it can start giving informative prediction intervals
long before the number of observations reaches the number of parameters K (or
the inverse significance level 1/ε).

This paper uses a general method of prediction called conformal prediction.
The method is reviewed in detail in the monograph [21] and introduced in the
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work leading up to that monograph. For each of the four models in Figure 1 we
define a suitable confidence predictor, i.e., a strategy for producing prediction
intervals or, more generally, prediction regions. For the IID model we follow [21]
and for the Gauss linear model we use Fisher’s classical confidence predictor.
The confidence predictors for the MVA and IID–Gauss models are new.

We are interested in two criteria of quality of confidence predictors, which we
call “validity” and “accuracy”. For valid confidence predictors, the probability
of error equals the nominal significance level ε (or at least never exceeds ε, in
which case we will refer to them as “conservatively valid”, or just “conservative”,
confidence predictors). (We will not be interested in approximate versions of
validity and conservative validity; the main problem with such approximate
versions is that it is typically difficult to describe conditions under which the
approximation is good or tolerable.) The second criterion is applied only to
valid confidence predictors: we want the prediction intervals to be as narrow as
possible; in this paper we, somewhat arbitrarily, measure the narrowness of a
prediction interval [a, b] by its length b−a. In particular, we want the prediction
intervals to become bounded as soon as possible.

Correspondingly, this paper uses two kinds of entities that one might want
to call “models”. The first kind is “hard models”, such as the four models in
Figure 1. These are the usual statistical models: our working hypothesis is that
the data set was generated by one of the probability distributions in the model.
In particular, the validity of our confidence predictors is allowed to depend on
the hard model. By default, the word “model” means “hard model”.

In addition to the accepted hard model, one often has other a priori in-
formation about the data-generating distribution: e.g., only a few parameters
might provide the bulk of the information relevant to prediction. Whereas we
might hesitate to include such a priori information in the hard model explicitly,
since it might destroy the validity of our confidence predictor if this information
happened to be far from the truth, we might still be able to use such informa-
tion in designing accurate confidence predictors provided our model is flexible
enough. A running example in this paper, introduced in Section 4, will be a
linear system with 100 parameters ten of which are felt to be especially impor-
tant. This will be our “soft model” (not defined formally); whether it is true or
not affects only the accuracy, but not validity, of our confidence predictors.

Separation of the available information about the data-generating distri-
bution into the hard model and soft model increases robustness of confidence
predictors with respect to modelling errors. If such an error occurs in the soft
model, the validity of predictions is not affected. At worst the predictions will
become useless, but they will not become misleading (with high probability un-
der any distribution in the hard model). For a further discussion and empirical
study, see [11], Section 4.

The property of validity of conformal predictors can be stated in an especi-
ally strong form in the on-line prediction protocol. It turns out that the true
responses fall outside the corresponding prediction regions independently for
different observations. In combination with the law of large numbers this im-
plies that, with high probability, the frequency of error is approximately equal
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to the nominal significance level. For the classical prediction intervals in the
Gauss linear model this property had been known (as we will see in Section 6)
but its importance had not been emphasized prior to the work leading up to
[21].

For reviews of the theory of conformal prediction see [11] and [18]. Parts of
these two papers are devoted to regression problems.

Section 2 formally introduces the on-line prediction protocol, with a more
detailed discussion postponed until Section 9. In Section 3 we describe the met-
hod of conformal prediction and state two key results (proved in Appendix A):
one asserts the strong validity and the other universality of conformal predictors.
Section 4 describes an artificial data set used in later sections for illustrating
the performance of various conformal predictors. The following four sections,
5–8, apply the method of conformal prediction to the IID, Gauss linear, MVA,
and IID–Gauss models, in this order. Section 10 concludes.

This version of the paper is an extension of the journal version [22]. In addi-
tion to the journal version, it contains a discussion of Fisher’s fiducial prediction
(the first subsection of Section 9) and three extra appendices, B (containing ex-
plicit algorithms), C (describing an R package implementing those algorithms),
and D.

2 On-line protocol, part I

In our prediction protocol, the task is to sequentially predict yn, n = 1, 2, . . .,
from xn and (xi, yi), i = 1, . . . , n−1. This on-line protocol is popular in machine
learning (see, e.g., [3] and references therein), but most statistical research (ex-
cept some work on sequential analysis) is still done in the “off-line”, or “batch”,
framework, where one starts from a complete sample (x1, y1), . . . , (xN , yN ). One
of the few statisticians advocating the on-line protocol (under the name “pre-
quential”, or predictive sequential) has been Philip Dawid [6].

Weak and strong validity and median accuracy

To explain what precisely we mean by validity and accuracy, the two criteria
of predictive performance mentioned in Section 1, we will need the notation
introduced in the following description of the on-line prediction protocol.

On-line prediction protocol

FOR n = 1, 2, . . .:
Predictor observes xn ∈ RK ;
Predictor outputs Γεn ⊆ R for all ε ∈ (0, 1);
Predictor observes yn ∈ R;
errεn := Iyn /∈Γεn

for all ε ∈ (0, 1);
Lεn := sup Γεn − inf Γεn for all ε ∈ (0, 1)

END FOR.
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(As usual, IF is defined to be 1 if the condition F holds and 0 if not.) At
each step and for each significance level ε, Predictor outputs a prediction region
(usually, although not necessarily, an interval) Γεn ⊆ R. We require that, for all
n, the family Γεn of prediction regions should be nested: Γε1n ⊆ Γε2n whenever
ε1 > ε2. An error is registered, errεn = 1, if the prediction region fails to contain
the true response yn, and the accuracy of this particular prediction is measured
by the length Lεn of the corresponding prediction interval co Γεn (coE standing
for the convex hull of the set E).

Let Errεn := errε1 + · · · + errεn be the cumulative number of errors made up
to, and including, step n. In the following sections, we will find it convenient
to distinguish between two notions of validity, “weak validity” and “strong va-
lidity”.

Definition 1. A confidence predictor is defined to be a measurable prediction
strategy Γεn = Γε(x1, y1, . . . ,xn−1, yn−1,xn) in the on-line prediction protocol.

Definition 2. A confidence predictor is weakly valid in some statistical model
if the probability that errεn = 1 is ε, for each ε ∈ (0, 1) and each n under any
probability distribution in the model.

The definition of weak validity is standard: cf. [5], (75) on p. 243. Weak
validity by itself does not imply that Errn /n is likely to be close to ε for large
n.

Definition 3. A confidence predictor is strongly valid if it is weakly valid and,
for each ε ∈ (0, 1), the events errεn = 1, n = 1, 2, . . ., are independent.

Figure 3 below shows the plot of Errεn against n for a specific confidence
predictor considered in this paper; it is typical of our predictors that the slopes
of the plots of Errεn are close to the corresponding significance levels ε (we use
the significance levels 5%, 1% and 0.5% in all our figures, represented by the
corresponding confidence levels 1− ε in the legends). This is the only figure in
this paper illustrating the validity of our confidence predictors: such figures, in
view of the mathematical results guaranteeing validity, tend to be uninformative.

We will measure the accuracy of the predictions made for the first n obser-
vations by the median M ε

n of the sequence Lε1, . . . , L
ε
n; again, this measure is

arbitrary, to a large degree. A plot of M ε
n against n will be called the median-

accuracy plot ; examples of such plots are given in Figures 2 and 4–6.
Unfortunately, the simple notions of validity introduced earlier have to be

extended to become useful for our purpose. This is needed because, e.g., the
classical prediction intervals are uninformative before the number of observati-
ons reaches the number of parameters, and so for small n the error probability
is zero rather than ε. Let N be a set of positive integer numbers (we are mainly
interested in the case where N has the form {m,m+ 1, . . .}).
Definition 4. We say that a confidence predictor is weakly valid for n ∈ N
in a statistical model if the probability is ε that it makes an error, errεn = 1,
at step n under any probability distribution in the model and for all n ∈ N
and ε ∈ (0, 1). It is strongly valid for n ∈ N if, in addition, errεn, n ∈ N , are
independent for any fixed ε.
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The role of the on-line protocol

The exposition of this paper is based on the on-line protocol, but the majority of
our findings are not constrained to this specific protocol. For example, the fact
that valid and informative prediction intervals can become feasible in the MVA
model before the number of observations exceeds the number of parameters does
not depend on the prediction protocol. In the absence of the on-line protocol,
however, “validity” should be understood in the standard sense of weak validity.

3 Conformal prediction

In this section we define a class of confidence predictors, called conformal pre-
dictors, and state results about their validity and universality, in a certain sense.

Notions of sufficiency

Fix some observation space Z. We will be interested in the space Z = RK × R
of pairs (x, y); in general, Z is a measurable space assumed to be Luzin, to
ensure the existence of regular conditional probabilities. To define conformal
predictors, we will need not only a statistical model on Z∞ but also a sequence
of sufficient statistics Sn : Zn → Σn, n = 1, 2, . . .; we will always assume that
Σn = Sn(Zn). We will need a strengthened form of sufficiency; in our definitions
we mainly follow Lauritzen [12], Section II.2.

The sequence (Sn) is algebraically transitive if there exists a sequence of
measurable functions Fn : Σn−1 × Z → Σn, n = 2, 3, . . ., such that

Sn(ζ1, . . . , ζn−1, ζn) = Fn(Sn−1(ζ1, . . . , ζn−1), ζn)

for all (ζ1, . . . , ζn−1, ζn) ∈ Zn. Intuitively, Sn(ζ1, . . . , ζn) is the summary of the
first n observations, and the condition of algebraic transitivity means that the
summary can be updated on-line.

The sequence (Sn) is totally sufficient for a statistical model P on Z∞ if,
for each n = 1, 2, . . .:

• Sn is sufficient for P;

• ζ1, . . . , ζn and ζn+1, ζn+2, . . . are conditionally independent given
Sn(ζ1, . . . , ζn), where (ζ1, ζ2, . . .) ∼ P , for any P ∈ P.

The second condition ensures that Sn(ζ1, . . . , ζn) carries all information in
ζ1, . . . , ζn that can be used for predicting the future observations ζn+1, ζn+2, . . . .

A sequence of statistics that is both algebraically transitive and totally suf-
ficient will be called an ATTS sequence. In the rest of this paper we will often
say “model” to mean a statistical model P equipped with an ATTS sequence
(Sn). This makes the word “model” ambiguous as we often omit “statistical”
in “statistical model”, but this should not lead to misunderstandings.

Each of the four statistical models considered in this paper (see Figure 1)
will be complemented with an ATTS sequence; in all four cases the observation
space Z will be RK × R.
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Testing conformity

The main ingredient of conformal prediction is statistical testing of conformity
of a new observation ζn to the old observations ζ1, . . . , ζn−1. In general, our
statistical tests will be randomized.

Fix a statistical model P with an ATTS sequence Sn : Zn → Σn. Define
Σ0 to be a fixed one-element set. Any sequence of measurable functions An :
Σn−1×Z → R, n = 1, 2, . . . , is called a nonconformity measure; An will be our
test statistics. Given a nonconformity measure (An), for each sequence ζ1, ζ2, . . .
of observations and each sequence τ1, τ2, . . . ∈ [0, 1]∞ we define the p-values

pn = pn(ζ1, . . . , ζn, τn) :=

P
(
Arnd
n > Aobs

n | Srnd
n = Sobs

n

)
+ τn P

(
Arnd
n = Aobs

n | Srnd
n = Sobs

n

)
,

n = 1, 2, . . . , (2)

where Arnd
n := An(Sn−1(ξ1, . . . , ξn−1), ξn) and Srnd

n := Sn(ξ1, . . . , ξn) are the
“random” values, Aobs

n := An(Sn−1(ζ1, . . . , ζn−1), ζn) and Sobs
n := Sn(ζ1, . . . , ζn)

are the “observed” values, and the probabilities are taken with respect to
(ξ1, ξ2, . . .) ∼ P for some P ∈ P. Since Sn are sufficient statistics, pn do not
depend on P ∈ P (at least for a suitable choice of regular conditional probabi-
lities). We will be interested in two cases: deterministic, where τn = 1 for all n,
and randomized, where τ1, τ2, . . . are generated independently from the uniform
distribution U on [0, 1] (such τ1, τ2, . . . model the output of a random numbers
generator).

Theorem 1. Suppose that the sequence of observations (ζ1, ζ2, . . .) ∈ Z∞ is
generated from a probability distribution P ∈ P and that the random numbers
(τ1, τ2, . . .) ∼ U∞ are independent of the observations. The p-values (2) are
then independent and distributed uniformly on [0, 1]:

(p1, p2, . . .) ∼ U∞.

For a proof of this theorem, see Appendix A. The fact that pn ∼ U is well
known, at least in the continuous case (see, e.g., [5], p. 66; (2) is a version of (1)
in [5]).

Conformal prediction

We start by extending, and spelling out in a greater detail, the notion of a
confidence predictor: in the general theory of this section and in its application
to the IID model in Section 5 we will need an element (typically quite small) of
randomization in confidence predictors.

Definition 5. A randomized confidence predictor is a measurable function
which maps every significance level ε ∈ (0, 1), every data sequence x1, y1, . . . ,xn−1, yn−1,
every vector xn of explanatory variables, and every number τ ∈ [0, 1] to a set
Γεn = Γε(x1, y1, . . . ,xn−1, yn−1,xn, τ) ⊆ R. We will use the notation Γεn when
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the data sequence, the vector of explanatory variables, and the number τ are
clear from the context.

Let the observation space be Z = RK×R. Once the p-values (2) are defined,
we can use them for confidence prediction (this is a standard procedure; cf. [5],
(76) on p. 243): we set

Γε(x1, y1, . . . ,xn−1, yn−1,xn, τn)

:= {y ∈ R : pn((x1, y1), . . . , (xn−1, yn−1), (xn, y), τn) > ε} . (3)

Definition 6. The randomized confidence predictor defined by (3) is called the
smoothed conformal predictor determined by the nonconformity measure (An).
A smoothed conformal predictor is a smoothed conformal predictor determined
by some nonconformity measure.

The following statement immediately follows from Theorem 1 and asserts
that smoothed conformal predictors are strongly valid.

Corollary 1. If the sequence of observations (xn, yn), n = 1, 2, . . ., is gene-
rated by a probability distribution P ∈ P and a smoothed conformal predictor
is fed with random numbers (τ1, τ2, . . .) ∼ U∞ independent of the observations,
the error sequence errε1, errε2, . . . at any significance level ε is a sequence of IID
Bernoulli random variables with parameter ε.

The adjective “smoothed” refers to using random numbers; if we take τn = 1
for all n = 1, 2, . . . , we will obtain the definition of a “deterministic conformal
predictor”, or just “conformal predictor”, and in this case we omit τn from our
notation.

Definition 7. A conformal predictor is the confidence predictor defined by

Γε(x1, y1, . . . ,xn−1, yn−1,xn)

:= {y ∈ R : pn((x1, y1), . . . , (xn−1, yn−1), (xn, y), 1) > ε} ,

where the p-values pn are defined by (2).

Notice that when a conformal predictor makes an error, the corresponding
smoothed conformal predictor also makes an error. In combination with Corol-
lary 1, we can see that conformal predictors are conservative, in the sense that,
for each ε, their error sequence errε1, errε2, . . . is dominated by a sequence of IID
Bernoulli random variables with parameter ε. In particular, whereas we have
limn→∞(Errεn /n) = ε a.s. for smoothed conformal predictors, we only have
lim supn→∞(Errεn /n) ≤ ε a.s. for conformal predictors.

We will see that there is no difference between conformal predictors and the
corresponding smoothed conformal predictors for the Gauss linear model and
n ≥ K + 3 since the second addend on the right-hand side of (2) is then zero.
There is also no difference for the MVA model and n ≥ 3; however, the difference
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is important (although usually barely noticeable on error and accuracy plots)
for the IID model.

A natural question is whether there are other ways to achieve validity, except
conformal prediction. The following theorem will give a negative answer to a
version of this question.

Definition 8. A confidence predictor Γ is invariant if Γεn, n > 1, depends on
the first n−1 observations only through the value of Sn−1 on those observations.

The use of invariant confidence predictors is natural in view of the sufficiency
principle; see, e.g., [5], Section 2.3 (ii). Let N be a set of positive integers. We
say that a confidence predictor Γ† is at least as accurate as another confidence
predictor Γ for n ∈ N if

(Γ†)ε(x1, y1, . . . ,xn−1, yn−1,xn) ⊆ Γε(x1, y1, . . . ,xn−1, yn−1,xn)

for all ε, all n ∈ N , and P -almost all x1, y1, . . . ,xn−1, yn−1,xn, under any
probability distribution P ∈ P.

Recall that a statistic S taking values in a measurable space Σ is said to be
boundedly complete (with respect to the statistical model P) if, for any bounded
measurable function f : Σ→ R, the following condition is satisfied: the expected
value EP (f(S)) of f(S) is zero under all P ∈ P only if f(S) = 0 P -almost surely
for all P ∈ P.

Theorem 2. Let N be a set of positive integers. Suppose the ATTS statistics
Sn are boundedly complete for n ∈ N . If a confidence predictor Γ is invariant
and weakly valid for n ∈ N , then there is a conformal predictor that is at least
as accurate as Γ for n ∈ N .

This theorem is also proved in Appendix A. An important step towards its
proof was made by Takeuchi ([19], p. 31).

The condition of bounded completeness holds for the Gauss linear model and
the MVA model by the standard completeness result for exponential statistical
models (see, e.g., Theorem 4.1 in [13]), and it is also known to hold for the IID
model (see the theorem on p. 797 in [1] or Theorem 1 in [14]).

4 Data set

We will illustrate the accuracy of various confidence predictors using the follo-
wing artificially generated data set with 600 observations and K = 100 expla-
natory variables. The components xn,k of xn are independently generated from
N(0, 1), and the responses yn are generated according to (1) with ξn ∼ N(0, 1)
independent between themselves and of all xn,k, with α = 100 and with the
following components βk of β:

βk :=

{
(−1)k−110 k = 1, . . . , 10

(−1)k−1 k = 11, . . . , 100.
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Table 1: Steps at which informative prediction becomes possible for the four
models; ε is the significance level (ε < 1/2 is assumed) and K is the number of
parameters.

The first step at which prediction intervals
Model can become informative

IID model d1/εe
Gauss linear model K + 3

MVA model 3
IID–Gauss model min (d1/εe,K + 3)

The probability distribution generating this data set belongs to all four mo-
dels considered in this paper (Figure 1). It is natural to expect that more specific
models, when true, will lead to better predictions. In one respect this is true:
more general models allow informative predictions later, as shown in Table 1
(to be explained in later sections). However, soon after the threshold given in
the table is reached, the quality of prediction becomes very similar on our data
set.

The (informal) soft model guiding the choice of the nonconformity measure
will include the assumption of linearity (1) and the knowledge, or guess, that
the first 10 explanatory variables are much more important than the rest.

Relationship (1) between the response and explanatory variables can be writ-
ten as

yn = γ · zn + ξn, (4)

where

γ :=

(
α
β

)
∈ RK+1 and zn :=

(
1

xn

)
∈ RK+1.

For l = 1, 2, . . ., let Zl be the l× (K + 1) matrix whose rows are z′i, i = 1, . . . , l,
and yl be the vector whose ith element is yi, i = 1, . . . , l. We will sometimes
refer to the first column of Zl as the dummy column.

5 The IID model

The statistical model considered in this section is non-parametric: we simply
assume that the observations (xn, yn) are IID. Notice that this does not involve
the assumption of linearity of the “true” regression function or the assumption
of a Gaussian noise. Linearity is, however, an important component of the soft
model used for choosing a suitable nonconformity measure.

The ATTS statistics are

Sn := *(x1, y1), . . . , (xn, yn)+,
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where we use *a1, . . . , an+ to denote the bag, or multiset, consisting of a1, . . . , an
(some of these elements may coincide). For each n, the conditional distribution
of (ξ1, . . . , ξn) given that

*ξ1, . . . , ξn+ = *(x1, y1), . . . , (xn, yn)+,

where ξi are IID random elements taking values in RK × R, coincides
(with probability one) with the probability distribution on the orderings
(xπ(1), yπ(1)), . . . , (xπ(n), yπ(n)) of the bag *(x1, y1), . . . , (xn, yn)+ that arises
when different permutations π are chosen with the same probability 1/n!.

The IID model is typical in that there is a great flexibility in choosing a
nonconformity measure for use in conformal prediction. Suppose, e.g., that the
number of explanatory variables K is too large for us to estimate all the βk and
α in the soft model (1). We believe, however, that the first K†n � K of the
explanatory variables are especially important, and it is feasible to estimate the
corresponding βk, k = 1, . . . ,K†n, and α.

Fix temporarily a positive integer number n. We will write y for yn, Z for
Zn and K† for K†n. Let U be the submatrix of Z consisting of the first K† + 1
columns of Z : those that correspond to the explanatory variables deemed to be
useful at this stage plus the dummy column 1. To test the conformity of the
nth observation to the first n− 1 observations, we will first fit a hyperplane to
all n observations using the relevant explanatory variables. Applying a small
“ridge coefficient” a > 0 to avoid the need to invert singular matrices, we obtain
the vector of residuals

e := y −U (U ′U + aI )
−1

U ′y, (5)

whose components will be denoted e1, . . . , en.
We will be interested in the conformal predictor determined by the noncon-

formity measure

An (Sn−1 (x1, y1, . . . ,xn−1, yn−1) , (xn, yn)) := |en|. (6)

Deleted and, especially, studentized residuals would also be a natural choice (see,
e.g., [21], pp. 34–35). In our experience, however, the difference is not significant,
and we stick to the simplest choice. The confidence predictor obtained from this
conformal predictor by replacing the prediction regions Γεn with the prediction
intervals co Γεn will be called the IID predictor (cf. the comments at the end of
this section).

The IID predictor can be implemented fairly efficiently. First notice that for
the IID model the formula (2) for p-values can be simplified to

pn =
|{i : αi > αn}|+ τn |{i : αi = αn}|

n
, (7)

where αi := An(*ζ1, . . . , ζi−1, ζi+1, . . . , ζn+, ζi), i ranges over {1, . . . , n}, and |E|
stands for the size of the set E. In the case of the nonconformity measure (6),
αi = |ei|. The residuals (5) can be written in the form

e = y −U (U ′U + aI )
−1

U ′y = Cy,

11



where C is the matrix I −U (U ′U + aI )
−1

U ′, not depending on the response
variables. If we fix the first n − 1 response variables yi and vary the last one,
y, the residuals ei = ei(y), i = 1, . . . , n, become linear functions of y (this fact
will also be used in Section 7). By (7) with τn := 1, the p-value is the fraction
of i = 1, . . . , n satisfying |ei(y)| ≥ |en(y)|; therefore, as y varies from −∞ to ∞,
the p-value can change only at the at most 2n− 2 points (called critical points)
which are solutions to the linear equations ei(y) = en(y) and ei(y) = −en(y).
This divides the real line into at most 4n − 3 intervals: the critical points,
considered as degenerate closed intervals, the open intervals bounded on both
sides by adjacent critical points, and the two unbounded open intervals to the
left of the leftmost critical point and to the right of the rightmost critical point;
if there are no critical points, this collapses into one unbounded open interval
R. We can compute the p-value for one point in each of these intervals and
then compute Γεn as the union of the intervals with p-values exceeding ε. The
computation of the IID prediction interval co Γεn can be simplified if we notice
that the set Γεn is closed (which is opposite to what we will have for the Gauss
linear and MVA models): assuming that the set of critical points is non-empty,
co Γεn is bounded if and only if the two unbounded intervals have p-values at
most ε, in which case the end-points of co Γεn can be found as the leftmost and
rightmost critical points with p-values exceeding ε. Computing Γεn and co Γεn
from scratch (e.g., without using the results of computations from the previous
steps of the on-line protocol) takes time O(n log n) (see [21], p. 33).

For use in our experiments with the artificial data set described in Section
4, we take

K†n :=

{
10 if n < 103

100 otherwise,
(8)

and so define U as the first 11 columns of Z if n < 103 and as the full Z
otherwise. Our chosen value for the threshold, 103, appeared to us slightly
less arbitrary than other choices, since it is the first step when the classical
prediction intervals (see (10) below) become bounded. However, the quality of
the estimates of α and the 100 components of β is still poor when n is close to
103. This affects the quality of our prediction intervals but does not show on
the median-accuracy plots. The value of the ridge coefficient is always a = 0.01.

As Figure 2 shows, the IID predictor works well for our data set if the signi-
ficance level is not too demanding: it can be seen from (7) (with τn := 1) that
for the IID prediction interval co Γεn to be bounded the number of observations
n has to be at least 1/ε (as Table 1 says). For example, for the significance
level ε = 0.5%, the IID predictor requires 200 observations to produce bounded
predictions, and this shows on the median-accuracy plot at n = 399 (since for
n < 399 at least half of the observed prediction intervals are infinitely wide).

The IID model is non-parametric but we can see that it still admits valid
confidence predictors (or conservative confidence predictors if one insists on
using deterministic predictors). The threshold 1/ε can be said to play the role
of the number of parameters, and the non-parametric nature of the model is
reflected in the fact that 1/ε → ∞ as ε → 0. Since 1/ε tends to ∞ relatively
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Figure 2: The median-accuracy plot for the IID predictor. The three significance
levels used in this and all the following figures are ε = 0.05, 0.01, 0.005, shown
in the form 100(1− ε)% (the corresponding confidence levels) in the legends.

slowly, such an infinite-dimensional model may be better for the purpose of
prediction than a K-dimensional model with a very large K.

Theorem 2 is not directly applicable to the IID model, since only smoothed
conformal predictors are valid, as the latter term is used in this paper. Two
results of the same nature about the IID model are stated in [21], Section 2.4.

There are two sources of conservativeness for the IID predictor as described
above (and used for producing Figure 2). First, we used a deterministic predictor
(taking τn = 1 for all n), and second, we replaced each prediction region by
its convex hull. Our experiments (see, e.g., Figure 3) show that we still have
approximate validity.

For each model considered in this paper except the Gauss linear model we
define a nonconformity measure involving the matrix U defined earlier in this
section. In the case of the IID model, we have used the nonconformity measure
(6) and called the corresponding conformal predictor with Γεn replaced by co Γεn
the IID predictor (it was called “Ridge Regression Confidence Machine” in [21]).
Of course, our brief term is somewhat misleading: it should always be borne
in mind that the conformal predictor leading to the IID predictor is only one
of many conformal predictors that can be defined in the IID model. Similarly,
in the following three sections we will introduce the Gauss predictor, the MVA
predictor, and the IID–Gauss predictor, which will also correspond to specific
nonconformity measures.
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Figure 3: The cumulative numbers of errors made by the IID predictor: Errεn is
plotted against n.

6 The Gauss linear model

Let γ̂l := (Z ′lZl)
−1Z ′lyl be the least-squares estimate of the parameter vector

γ in (4) from the first l observations. For simplicity, we will assume that the
matrix Zl has full rank (i.e., rankZl = min(l,K + 1)) for all l; this implies that
γ̂l is well defined for l ≥ K + 1.

Let ŷn be the least-squares prediction γ̂n−1 · zn for yn and

σ̂2
l :=

1

l −K − 1
(yl − Zlγ̂l)

′(yl − Zlγ̂l)

be the standard estimate of σ2 from Zl and yl. It is well known that in the
Gauss linear model the ratio

Tn :=
yn − ŷn√

1 + z′n(Z ′n−1Zn−1)−1znσ̂n−1

, n = K + 3,K + 4, . . . , (9)

has the t-distribution with n−K−2 degrees of freedom. This gives the classical
weakly valid prediction interval for the nth response,

Γεn :=
{
y ∈ R : |y − ŷn| < t

ε/2
n−K−2

√
1 + z′n(Z ′n−1Zn−1)−1znσ̂n−1

}
,

n ≥ K + 3, (10)

where tδm is the upper δ point of the t-distribution with m degrees of freedom.
(See, e.g., [17], (5.27).) We set Γεn to R when n < K + 3.

Later in this section we will see that Corollary 1 implies the following pro-
perty of the classical prediction intervals for the Gauss linear model.
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Corollary 2. Let ε ∈ (0, 1). The events yn /∈ Γεn, n = K + 3,K + 4, . . ., are
independent. In particular, the confidence predictor (10) is strongly valid for
n ≥ K + 3.

Remark 1. Corollary 2 and, more generally, the fact that the statistics (9) are
independent was established in [7] following [15]. It is interesting that both
papers use the independence of (9) for testing rather than for prediction.

Let us now see that some conformal predictor outputs the classical prediction
intervals (10). This will demonstrate that Corollary 2 is indeed a special case
of Corollary 1.

The ATTS statistics for the Gauss linear model are

Sn(x1, y1, . . . ,xn, yn) :=

(
x1, . . . ,xn,

n∑
i=1

yi,
n∑
i=1

yixi,
n∑
i=1

y2
i

)
.

(It is natural to have x1, . . . ,xn as components of Sn, although they are su-
perfluous under our original definition, in which x1,x2, . . . are deterministic.)
The prediction intervals (10) are precisely the prediction regions output by the
conformal predictor corresponding to the nonconformity measure

An (Sn−1 (x1, y1, . . . ,xn−1, yn−1) , (xn, yn))

:=
|yn − ŷn|√

1 + z′n(Z ′n−1Zn−1)−1znσ̂n−1

(11)

(cf. (9); the goodness of the definition follows from the formulas given at the
beginning of this section). The expression on the right-hand side of (11) can be
replaced by other natural expressions, such as |yn − ŷn|. See [21], Section 8.5,
for further details.

According to our general convention, the conformal predictor (10) is called
the Gauss predictor (although its discoverer was Fisher rather than Gauss).

We have already mentioned that the classical confidence predictor, Γεn given
by (10), does not work when there are many parameters; in particular, it is
required that n ≥ K + 3. Theorem 2 shows that there is hardly any way to
use the knowledge that the first 10 explanatory variables are the important
ones without abandoning the Gauss linear model: no weakly valid confidence
predictor in a very wide and natural class can produce informative prediction
intervals unless n ≥ K + 3. Indeed, since the conditional distribution of the
first n observations given Sn is concentrated at one point for n ≤ K + 1 and
at two points for n = K + 2 with probability one, no conformal predictor and,
therefore, no weakly valid invariant confidence predictor can give a bounded
prediction region Γεn for ε < 0.5 and n ≤ K + 2.

Remark 2. A common reaction to the importance of the condition n ≥ K + 3
is that one can use only a subset of explanatory variables when n < K + 3. A
simple answer is that we are interested in confidence predictors that are valid
under the Gauss linear model (1), not under some other model that is only
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Figure 4: The median-accuracy plot for the classical prediction intervals.

“approximately true”, in some ill-defined sense. However, the reader might
wonder how the case of the Gauss linear model is different from the case of the
IID model, where we are allowed to (and in Section 5 do) take into account only
a subset of explanatory variables before n reaches K + 3. The crucial difference
is that if our data (xn, yn) conform to the IID model, discarding a subset of
the explanatory variables will give us data (x′n, yn) that still conform to the
IID model; on the other hand, if our data (xn, yn) conform to the Gauss linear
model, discarding a subset of the explanatory variables will give us data (x′n, yn)
that do not conform to the IID model, unless the coefficients βk in front of the
discarded explanatory variables xn,k (see (1)) happen to be precisely zero. More
generally, applying any transformation x′n := φ(xn) to the explanatory vectors
does not lead us outside the IID model. The MVA model is similar to the IID
model in this respect, except that the transformation φ has to be linear.

Figure 4 gives the median-accuracy plot for the confidence predictor (10);
the predictor works very well soon after the number of observations reaches
K + 3 = 103. Since the median is plotted, the good quality of the prediction
intervals shows only from n = 205: indeed, for n < 205 at least half of the
observed prediction intervals are infinitely wide.

7 The MVA model

Remember that the MVA model assumes, besides (1), that xn are generated
independently from the same unknown multivariate Gaussian distribution on
RK , with the noise random variables ξ1, ξ2, . . . independent of x1,x2, . . . . The

16



ATTS statistics in the MVA model are

Sn :=

(
n∑
i=1

xi,

n∑
i=1

yi,

n∑
i=1

xix
′
i,

n∑
i=1

yixi,

n∑
i=1

y2
i

)
;

equivalently, the statistics can be defined to be the empirical means and cova-
riances of all variables, i.e., the response and the explanatory variables.

Let y := yn, Z := Zn, K† := K†n and U be as in Section 5. Suppose
the value of the statistic Sn is known. The vector of residuals (5) can now be
written as

e := y −U (U ′U + aI )
−1

U ′y = y −U c, (12)

where c := (U ′U + aI )−1U ′y is a known vector. Since the joint distribution
of y and the non-dummy columns of U is invariant with respect to rotations
around the vector 1, the distribution of e will also be invariant with respect to
such rotations. It might help the reader’s intuition to notice that knowing the
value of Sn is equivalent to knowing the lengths of and the angles between the
following K + 2 vectors: the K + 1 columns of Z and y.

In the rest of this section we will assume n ≥ 3 (with arbitrary conventions
for n = 1, 2). Let e1, . . . , en be the components of the vector (12) of residuals
and en−1 be the average of e1, . . . , en−1. A standard statistical result (stated in
Section 9; see (15)) allows us to conclude that√

n− 1

n

en − en−1√
1

n−2

∑n−1
i=1 (ei − en−1)2

(13)

has the t-distribution with n− 2 degrees of freedom.
Let us see how to implement the conformal predictor corresponding to the

nonconformity measure

An (Sn−1(x1, y1, . . . ,xn−1, yn−1), (xn, yn)) :=
en − en−1√∑n−1
i=1 (ei − en−1)2

, (14)

which is proportional to (13); the fact that the right-hand side of (14) depends
on the first n − 1 observations only through the value of Sn−1 can be seen
from the representation (12), where c is a known vector. First we replace the
true value yn by variable y ranging over R. Each residual ei becomes a linear
(according to (12), where c also depends on y) function ei(y) of y, and the
prediction region can be written as

Γεn :=

y ∈ R :

√
n− 1

n

|en(y)− en−1(y)|√
1

n−2

∑n−1
i=1 (ei(y)− en−1(y))2

< t
ε/2
n−2

 .

The inequality in this formula is quadratic in y, so Γεn is easy to find. We can see
that the prediction region for yn is an interval (empirically, this is the typical
case), the union of two rays, the empty set, or the whole real line.
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Figure 5: The median-accuracy plot for the MVA predictor.

Replacing Γεn by co Γεn in the conformal predictor we have just defined gives
the MVA predictor. Our experiments with the artificial data set of Section 4
are carried out as before (cf. (8)): U is defined as the first 11 columns of Z if
n < 103 and as the full Z otherwise.

The median-accuracy plot for the MVA predictor and our artificial data set
is shown in Figure 5. Before the threshold 103 the predictor quickly learns
α and the first 10 parameters βk, and its performance more or less stabilizes
before quickly improving again when it starts learning the other parameters
from n = 103 onwards; the second improvement in the performance shows on
the median-accuracy plot from n = 205.

The performance of the MVA predictor is better than the performance of any
other confidence predictor considered in this paper. Of course, this should not be
taken to mean that the other predictors are worse. Different predictors are based
on different information about the data set. None of the predictors “knows”
that the components of xn are realizations of independent standard Gaussian
random variables; even the MVA model, the narrowest model considered in this
paper, allows arbitrary means of and arbitrary correlations between different
explanatory variables for the same observation. The Gauss predictor does not
know that the xn are IID and Gaussian. The IID predictor only knows that the
observations (xn, yn) are IID, and the IID–Gauss predictor, introduced in the
next section, knows, in addition, that the yn are generated by (1).

The median-accuracy plot for each of the four predictors is essentially de-
termined by that for the MVA predictor and the threshold for the correspon-
ding model as shown in Table 1. It is convenient to represent each line on a
median-accuracy plot as the function that maps each value for the accuracy
in the interval [0, 150] to the first step at which that accuracy is achieved (so
the graph of this function is obtained by rotating the page by 90◦ countercloc-

18



0 100 200 300 400 500 600
0

50

100

150

99.5%
99%
95%

Figure 6: The median-accuracy plot for the IID–Gauss predictor.

kwise). Each of the three functions in Figure 2 is, approximately, the maximum
of 2d1/εe and the corresponding function in Figure 5. Similarly, each of the
three functions in Figure 4 is, approximately, the maximum of 2(K + 3) = 206
and the corresponding function in Figure 5. As usual, the factor of 2 appears
because of the use of median in our accuracy plots.

8 The IID–Gauss model

As defined in Section 1, the IID–Gauss model is the combination of the Gauss
linear and IID models: we assume both that the observations are IID and that
the responses are generated by (1) with ξ1, ξ2, . . . independent of x1,x2, . . . .
Correspondingly, the ATTS statistics are

Sn :=

(
*x1, . . . ,xn+,

n∑
i=1

yi,

n∑
i=1

yixi,

n∑
i=1

y2
i

)
.

Using the nonconformity measure (6) and replacing the prediction regions
output by the corresponding conformal predictor with their convex hulls, we
obtain the IID–Gauss predictor. Its performance on our usual data set is shown
in Figure 6. We do not know whether the IID–Gauss predictor can be imple-
mented efficiently, and Figure 6 was produced using Monte-Carlo sampling from
the conditional distributions given Sn. However, comparing Figure 6 to Figures
2 (to the left of n = 205) and 4 (to the right of n = 205), we can see that the
following simple confidence predictor will work almost as well as the IID–Gauss
predictor on our data set: predict using the IID predictor if n < 103 and pre-
dict using the Gauss predictor if n ≥ 103. As in all other cases in this paper
where the threshold n = K + 3 = 103 appears, the best switch-over point will
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be slightly greater than K + 3, but the question of when exactly to switch is
outside the scope of this paper.

Remark 3. The IID predictor and the IID–Gauss predictor use the same non-
conformity measure, (6), but still produce very different median-accuracy plots
at confidence level 99.5%. This happens because of the conditioning on the
event Srnd

n = Sobs
n in the definition (2). Since the ATTS statistics perform more

radical data compression in the case of the IID–Gauss model, the achievable
values of P(Arnd

n ≥ Aobs
n | Srnd

n = Sobs
n ) (corresponding to (2) with τn := 1) are

much smaller than the 1/n achievable under the IID model.

As in the previous section, there is a close connection between Figures 5 and
6: each of the three functions in Figure 6 is, approximately, the maximum of
2 min(d1/εe,K+3) and the corresponding function in Figure 5. The distributive
law of max over min now implies that each of the three functions in Figure 6 is
the minimum of the corresponding functions in Figures 2 and 4.

9 On-line protocol, part II

Theorem 1 sheds new light not only on the main topic of this paper, predictive
linear regression, but also on some more classical corners of statistics. In this
section we will discuss, in particular, Fisher’s fiducial prediction and Wilks’s
non-parametric prediction intervals. At the end of the section we discuss relax-
ations of the on-line protocol.

The Gaussian model

Let us consider the model (1) with the xn absent (i.e., K = 0); in other words,
yn is an IID sequence with yn ∼ N(α, σ2) and unknown α and σ2 > 0. This
model will be called the Gaussian model. Notice that the MVA model and the
IID–Gauss model also reduce to the Gaussian model when K = 0.

The fact that

Tn :=

√
n− 1

n

yn − yn−1

σ̂n−1
, (15)

where

yl :=
1

l

l∑
i=1

yi and σ̂2
l :=

1

l − 1

l∑
i=1

(yi − yl)2,

has the t-distribution with n − 2 degrees of freedom [8] allows us to conclude
that yn ∈ Γεn with probability 1 − ε, where the prediction interval Γεn for yn is
defined by

Γεn :=

{
y ∈ R :

∣∣y − yn−1

∣∣ < t
ε/2
n−2

√
n

n− 1
σ̂n−1

}
, n = 3, 4, . . . , (16)

and ε ∈ (0, 1) is the chosen significance level. This prediction interval is a special
case of (10).
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Fisher discussed (16) and related confidence predictors in his last book ([9],
Sections V.3–4) under the rubric of “fiducial prediction”. It appears that the
idea of fiducial prediction is less controversial (and less often discussed) than the
related idea of fiducial inference for parameter values; besides, we will be inte-
rested in the least controversial aspects of fiducial prediction. Fisher’s comments
about fiducial prediction in Sections V.3–4 are all applicable to the predictor
(16), although in Section V.3 he discusses prediction of exponentially distributed
rather than Gaussian random variables.

To some extent answering his critics (“some teachers assert that statements
of fiducial probability cannot be tested by observations”), he writes that “fidu-
cial statements about future observations” (such as (16), although this passage is
about exponentially distributed responses) “are verifiable by subsequent obser-
vations to any degree of precision required”. The following is our reconstruction
(we believe the only possible reconstruction) of Fisher’s verification protocol, as
applied to the prediction intervals (16). Fix a significance level ε ∈ (0, 1) and
l ∈ {2, 3, . . .} (the sample size; we might consider samples of different sizes, but
we will stick to the simplest case). For m = 1, 2, . . ., generate the mth sample

y(m−1)(l+1)+1, y(m−1)(l+1)+2, . . . , ym(l+1)−1

and the mth test observation ym(l+1). Register an error if the mth prediction
interval computed from the mth sample according to (16) fails to contain the
mth test observation:

err†m :=

{
0 if |ym(l+1) − y| < t

ε/2
l−1

√
l+1
l

√
1
l−1

∑m(l+1)−1
i=(m−1)(l+1)+1(yi − y)2

1 otherwise,

where

y :=
1

l

m(l+1)−1∑
i=(m−1)(l+1)+1

yi.

As in the on-line protocol, the errors err†m, m = 1, 2, . . ., are independent. The
frequency of error gets arbitrarily close to ε with an arbitrarily high probability
as the number of observations increases.

Fisher’s verification protocol has a serious drawback: as Fisher puts it,

In carrying out such a verification [. . . ], it is to be supposed that
the investigator is not deflected from his purpose by the fact that
new data are becoming available from which predictions, better than
the one he is testing, could at any time be made. For verification, the
original prediction must be held firmly in view. This, of course, is a
somewhat unnatural attitude for a worker whose main preoccupation
is to improve his ideas.

Indeed, when making his prediction for the mth test observation, the “inves-
tigator” is asked to ignore the first m − 1 samples. The protocol seems to be
an artificial device rather than a description of what “a worker whose main
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preoccupation is to improve his ideas” might do in reality. Let us see, however,
what happens if all the previous observations are used when making the mth
prediction; in this case, the sequence of errors becomes

err‡m :=

{
0 if |ym(l+1) − y| < t

ε/2
m(l+1)−2

√
m(l+1)
m(l+1)−1

√
1

m(l+1)−2

∑m(l+1)−1
i=1 (yi − y)2

1 otherwise,

where

y :=
1

m(l + 1)− 1

m(l+1)−1∑
i=1

yi.

As err‡m, m = 1, 2, . . ., is a subsequence of the sequence of errors errεn, n =
1, 2, . . ., in the on-line protocol, the errors are still independent. Theorem 1
cures the drawback.

In Sections V.3–4 of his book, Fisher is also interested in the problem of pre-
dicting some characteristic of a future sample from a given sample (our problem
of predicting one future observation is a special case, corresponding to a second
sample of size one). Fisher’s verification protocol is defined in essentially the
same way and leads to independent errors. It can be shown that, in all cases
considered by Fisher, the independence persists when the predictions for test
samples are based on all available information. (We assume that Fisher’s fidu-
cial distributions for the characteristics of the second sample have been replaced
by prediction intervals, maybe unbounded on one side; he does this explicitly
only for his exponential example in Section V.3.)

Fisher’s theory of fiducial prediction is based on the fact that a value such as
(15) has a known distribution for each n; therefore, it can be used as a “pivot”
to project this known distribution onto the future observation yn. This idea
may be difficult to formalize, but Fisher’s observation that (15) has a known
distribution can be strengthened: Theorem 1 (applied to the nonconformity
measure (15)) implies that the random variables Tn, n = 3, 4, . . ., have the t-
distribution with n − 2 degrees of freedom and are independent in the on-line
protocol. Therefore, not only the individual Tn have known distributions, but
also the whole sequence (T1, T2, . . .) has a known distribution (the product of
t-distributions).

The univariate IID model

The IID model is different from all the other models in this paper (see Figure 1)
in that it gives a univariate model different from the Gaussian model in the case
where the explanatory variables are absent. The construction of prediction and
tolerance intervals in the univariate IID model, which says that y1, y2, . . . form an
IID sequence, was undertaken by many authors following the pioneering paper
by Wilks [23]. Wilks’s work was later extended to the multivariate case: see, e.g.,
Fraser [10]; this extension, however, is not directly related to our IID predictors.
For simplicity, let us assume in this subsection, as is customary in literature,
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that the distribution of one observation is continuous. Correspondingly, we will
assume that the realized values of yn, n = 1, 2, . . ., are all different.

For each n = 1, 2, . . ., define Tn ∈ {1, 2, . . . , n} as the smallest i such that
yn < y(n−1,i), where y(n−1,1), . . . , y(n−1,n−1) is the sequence of the first n − 1
observations y1, . . . , yn−1 sorted in the ascending order; if yn > y(n−1,n−1),
set Tn := n. Each Tn is a “pivot”, being distributed uniformly on the set
{1, . . . , n}. Wilks suggested the following prediction intervals based on this

fact: fix a number r ∈ {1, 2, . . .} and define Γ
2r/n
n , n = 2r + 1, 2r + 2, . . ., to be

the interval (y(n−1,r), y(n−1,n−r)); the probability of error, yn /∈ Γ
2r/n
n , is then

2r/n. Now Theorem 1 implies that the whole random sequence (T1, T2, . . .)
has a known distribution: namely, it is distributed according to the product
U1 × U2 × · · · of the uniform distributions Un on {1, . . . , n}. In particular,

Wilks’s prediction intervals Γ
2r/n
n , n = 2r + 1, 2r + 2, . . ., lead to independent

errors.

Relaxations of the on-line protocol

This paper concentrates on the on-line prediction protocol. Smoothed conformal
predictors lead to independent errors in the on-line protocol, and Theorem 2
suggests that conformal predictors are the most natural weakly valid confidence
predictors. This is why we included the requirement of independence in the
definition of strong validity, despite the fact that the error frequency can be
shown to approach the error probability ε with probability approaching one
even when the requirement of independence is relaxed in certain ways.

The situation changes when we move outside the on-line protocol. The on-
line protocol is natural, but in one respect it is overly restrictive: the true
response yn becomes known before the prediction for the next response yn+1 is
made. It can be shown that the error frequency will still converge to ε if the true
response is only given for a small fraction of observations, and even for those
observations it can be given with a delay ([21], Section 4.3; see also [20] for an
empirical study). The independence of errors, however, will be lost (we can still
have “approximate independence”, but this is a much more elusive notion than
ordinary independence).

10 Conclusion

In this paper we considered the problem of prediction in three main regression
models. One of these models, the Gauss linear model, is the standard textbook
one. The MVA model seems to have been somewhat neglected, partly because
of philosophical reasons: according to the conditionality principle ([5], Section
2.3(iii)) one should condition on the observed values of the explanatory vari-
ables to make the prediction (or estimate, etc.) more relevant to the data at
hand. In most of this paper we took a pragmatic approach, studying which
models permit one to produce informative prediction intervals in different cir-
cumstances without being restricted a priori by general principles. We did use
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the sufficiency principle in our interpretation of Theorem 2, but we admit that
this makes the theorem less convincing. Surprisingly, the IID model appears to
have been neglected in the field of regression, even in non-parametric statistics,
where the value of this model is in principle well understood.

Acknowledgments

This paper has greatly benefited from Glenn Shafer’s advice, from a discussion
with Steffen Lauritzen, and from correspondence with Philip Dawid. Comments
by the anonymous referees of the journal version and by Prof. Susan Murphy
helped us improve the presentation. This work was partially supported by
EPSRC (grant EP/F002998/1), MRC (grant S505/65), and the Royal Society.

Appendix A: Proofs of the theorems

In this appendix we will prove the two main results stated in this paper, Theo-
rems 1 and 2. A version of Theorem 1 was proved in Section 8.7 of [21], but we
reproduce the principal points of the proof to make our exposition self-contained.
A special case of Theorem 2 (namely, for the IID model) was proved in Section
2.6 of [21].

Proof of Theorem 1

In this proof, ζ1, ζ2, . . . will be random observations generated by P ∈ P,
(ζ1, ζ2, . . .) ∼ P , and τ1, τ2, . . . will be random numbers, (τ1, τ2, . . .) ∼ U∞.
For each n = 0, 1, . . . let Gn be the σ-algebra generated by the random elements

Sn(ζ1, . . . , ζn), ζn+1, τn+1, ζn+2, τn+2, . . . .

So G0 is the most informative σ-algebra and G0 ⊇ G1 ⊇ G2 ⊇ · · · . It will be
convenient to write PG(E) and EG(ξ) for the conditional probability P(E | G)
and expectation E(ξ | G), respectively, given a σ-algebra G.

Lemma 1. For any step n = 1, 2, . . . and any ε ∈ (0, 1),

PGn (pn ≤ ε) = ε.

Proof. For a given value of the summary Sn(ζ1, . . . , ζn) of the first n obser-
vations, consider the conditional distribution function F of the random vari-
able η := An(Sn−1(ζ1, . . . , ζn−1), ζn) (because of the total sufficiency, it does
not matter whether we further condition on ζn+1, τn+1, ζn+2, τn+2, . . .). Define
F (x−) to be supt<x F (t). Our task is to show that the conditional probability
of the event

1− F (η) + τn(F (η)− F (η−)) ≤ ε (17)

is ε (since the left-hand side of (17) coincides with the right-hand side of the
definition (2)). The latter fact is usually stated in statistics textbooks for con-
tinuous F (see, e.g., [5], p. 66), but it is also easy to check in general.
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Lemma 2. For any step n = 1, 2, . . ., pn is Gn−1-measurable.

Proof. This follows from the definition: pn is defined in terms of ζn, τn and the
summary of the first n− 1 observations.

Now we can easily prove the theorem. First we demonstrate that, for any
n = 1, 2, . . . and any ε1, . . . , εn ∈ (0, 1),

PGn(pn ≤ εn, . . . , p1 ≤ ε1) = εn · · · ε1 a.s. (18)

The proof is by induction on n. For n = 1, (18) is a special case of Lemma 1.
For n > 1 we obtain, from Lemmas 1 and 2, standard properties of conditional
expectations, and the inductive assumption:

PGn(pn ≤ εn, . . . , p1 ≤ ε1) = EGn
(
EGn−1

(
Ipn≤εnIpn−1≤εn−1,...,p1≤ε1

))
= EGn

(
Ipn≤εn EGn−1

(
Ipn−1≤εn−1,...,p1≤ε1

))
= EGn(Ipn≤εnεn−1 · · · ε1)

= εnεn−1 · · · ε1 a.s.

The “tower property” of conditional expectations immediately implies

P (pn ≤ εn, . . . , p1 ≤ ε1) = εn · · · ε1.

Therefore, the distribution of the first n p-values p1, . . . , pn is Un, for all n =
1, 2, . . . . This implies that the distribution of the infinite sequence p1, p2, . . . is
U∞.

Proof of Theorem 2

In this proof, Z := RK × R and ζi stands for (xi, yi). Let n ∈ N .
For each summary s ∈ Σn let f(s) be the conditional probability given

Sn(ζ1, . . . , ζn) = s that Γ makes an error at a significance level ε when predicting
yn from ζ1, . . . , ζn−1 and xn, the observations ζ1, ζ2, . . . being generated from
P ∈ P. We know that the expected value of f(Sn(ζ1, . . . , ζn)) is ε under any
P ∈ P, and this, by the bounded completeness of Sn, implies that f(s) = ε for
almost all (under PS−1

n for any P ∈ P) summaries s. Define E(s, ε) to be the
set of all pairs (s′, ζ) = (s′, (x, y)) ∈ Σn−1 × Z such that Fn(s′, ζ) = s (where
Fn is the function from the definition of the algebraic transitivity of the Sn)
and Γ makes an error at the significance level ε when predicting y and fed with
ζ1, . . . , ζn−1 satisfying Sn−1(ζ1, . . . , ζn−1) = s′ and with x (since Γ is invariant,
whether an error is made depends only on s′, not on the particular ζ1, . . . , ζn−1).
It is clear that

ε1 ≤ ε2 =⇒ E(s, ε1) ⊆ E(s, ε2)

and

P ((Sn−1(ζ1, . . . , ζn−1), ζn) ∈ E(s, ε) | Sn(ζ1, . . . , ζn) = s) = ε a.s.,

where (ζ1, ζ2, . . .) ∼ P ∈ P.
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In this proof we say “conformity measure” to mean a nonconformity measure
which is used for computing p-values in the opposite way to (2): the “>” in (2)
is replaced by “<”. Let us check that the conformal predictor Γ† determined
by the conformity measure

An(s′, ζ) := inf {ε : (s′, ζ) ∈ E(Fn(s′, ζ), ε)}

is at least as accurate as Γ. By the monotone convergence theorem for conditi-
onal expectations,

P (An(Sn−1(ζ1, . . . , ζn−1), ζn) ≤ ε | Sn(ζ1, . . . , ζn) = s)

= lim
δ↓ε

P (An(Sn−1(ζ1, . . . , ζn−1), ζn) < δ | Sn(ζ1, . . . , ζn) = s)

≤ lim
δ↓ε

P ((Sn−1(ζ1, . . . , ζn−1), ζn) ∈ E(s, δ) | Sn(ζ1, . . . , ζn) = s)

= lim
δ↓ε

δ = ε a.s.,

where (ζ1, ζ2, . . .) ∼ P ∈ P and δ is constrained to be a rational number.
Therefore, at each significance level ε and for P -almost all (ζ1, . . . , ζn) ∈ Zn,

yn ∈ (Γ†)ε(ζ1, . . . , ζn−1,xn)⇐⇒ P
(
Arnd
n ≤ Aobs

n | Srnd
n = Sobs

n

)
> ε

=⇒ Aobs
n > ε =⇒ (Sn−1(ζ1, . . . , ζn−1), ζn) /∈ E(Sn(ζ1, . . . , ζn), ε)

⇐⇒ yn ∈ Γε(ζ1, . . . , ζn−1,xn),

in the notation of (2).

Appendix B: Explicit algorithms

For all three main models considered in this paper there are relatively efficient
algorithms for computing prediction intervals. In this appendix we will describe
two of them, one new (the MVA predictor) and the other not known in the
statistical community (the IID predictor).

The MVA predictor

The idea of this algorithm was described in Section 7, and here we will give ex-
plicit formulas which the reader might find useful in writing computer programs
implementing this idea. Let P be the matrix

P = I −U (U ′U + aI )
−1

U ′

projecting the responses y onto the residuals e (see (12)). Introducing the
notation

y =


y1

...
yn−1

y

 =


y1

...
yn−1

0

+


0
...
0
y

 = y0 + yu
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(so that y0 is the vector of the first n − 1 responses followed by a 0 and u is
the vector whose only non-zero component is a 1 at the nth position), we can
define the vector of residuals as

e = P(y0 + yu) = Py0 + yPu. (19)

Subtract from each component of Py0 the mean of the first n− 1 components
of Py0 and subtract from each component of Pu the mean of the first n − 1
components of Pu; let the resulting vectors be a and b, respectively. The
prediction region consists of the y satisfying√

n− 1

n

|an + ybn|√
1

n−2

∑n−1
i=1 (ai + ybi)2

< t, (20)

where ai and bi are the components of a and b, respectively, and t stands for

t
ε/2
n−2. We can rewrite (20) as

(an + bny)2 < t2
n

(n− 1)(n− 2)

n−1∑
i=1

(ai + biy)2,

or, explicitly as a quadratic inequality,

Ay2 + 2By + C < 0,

where

A = (n− 1)(n− 2)b2n − t2n
n−1∑
i=1

b2i ,

B = (n− 1)(n− 2)anbn − t2n
n−1∑
i=1

aibi,

C = (n− 1)(n− 2)a2
n − t2n

n−1∑
i=1

a2
i .

The solutions to the corresponding quadratic equation are

−B ±
√
D

A
, (21)

where the discriminant D is

D = B2 −AC.

Therefore, the prediction interval (defined, as usual, to be the convex hull of
the prediction region) is:
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• unbounded if
A < 0

or
A = 0 and B 6= 0

or
A = B = 0 and C < 0;

• empty if
A > 0 and D ≤ 0

or
A = B = 0 and C ≥ 0;

• otherwise (i.e., if A > 0 and D > 0), the open interval with the end-points
(21).

The IID predictor

In this subsection we describe explicitly the IID predictor. We will follow mainly
[21], Section 2.3, although our current algorithm is simpler, as we are only
interested in finding the prediction intervals (the convex hulls of the prediction
regions) and not the prediction regions themselves.

Rewrite the vector of residuals (19) in the form a+yb, where a := Py0 and
b := Pu. For each i = 1, . . . , n, let

Si := {y : |ei(y)| ≥ |en(y)|} = {y : |ai + biy| ≥ |an + bny|},

where ai and bi are the components of a and b. Each set Si (always closed)
will be the real line, the union of two rays, a ray, an interval (by an interval
we will always mean a bounded interval), a point (which is a special case of an
interval), or empty. Indeed, as we are interested in |ai + biy| we can assume
bi ≥ 0 for i = 1, . . . , n (if necessary, multiply both ai and bi by −1). If bi 6= bn
then |ei(y)| and |en(y)| are equal at two points (which may coincide):

−ai − an
bi − bn

and − ai + an
bi + bn

; (22)

in this case, Si is an interval (possibly a point), the union of two rays, or the
real line. If bi = bn 6= 0 then |ei(y)| = |en(y)| at the only point

−ai + an
2bi

(23)

(and Si is a ray) unless ai = an, in which case Si = R. If bi = bn = 0, Si is
either ∅ or R.

To calculate the p-value p(y) for any potential response y of xn, we count
how many Si include y and divide by n:

p(y) =
|{i = 1, . . . , n : y ∈ Si}|

n
.
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This formula immediately implies that each Γεn, as defined by (3), is a closed
set: setting k := bεnc+ 1,

Γεn = {y : p(y) > ε} = {y : |{i = 1, . . . , n : y ∈ Si}| ≥ k}

=
⋃

{i1,...,ik}⊆{1,...,n}

Si1 ∩ · · · ∩ Sik ;

the last expression is a finite union of closed sets.
The following algorithm implicitly keeps track of the number M(y) of i =

1, . . . , n − 1 such that y ∈ Si for each y ∈ R. For each critical point yj , j =
1, . . . ,m, let NM(j) be the change in M(y), as y increases, at yj due to yj being
a critical point. The set of critical points will be represented as a sequence P
(initially empty); the critical points will be listed in P and in NM in the same
order. The algorithm will also compute the number L of Si that include points
to the left of the left-most critical point and the number R of Si that include
points to the right of the right-most critical point. It is clear that L and NM (or
R and NM) determine M . The word “add” in the description of the algorithm
means “attach at the end” (unless we say explicitly “add in front”) and has
nothing to do with arithmetic addition.

The algorithm is given a significance level ε and outputs the corresponding
prediction interval Γ̄εn := co Γεn. We will assume that the set of critical points
((22) and (23)) is not empty and will supply the matrix U with a lower index
to explicitly indicate the dependence on n.

IID predictor

P := I −Un(U ′nUn + aI )−1U ′n;
a = (a1, . . . , an)′ := P(y1, . . . , yn−1, 0)′;
b = (b1, . . . , bn)′ := P(0, . . . , 0, 1)′;
FOR i = 1, . . . , n

IF (bi < 0) ai := −ai; bi := −bi END IF
END FOR
P := NM := (); L := R := 0;
FOR i = 1, . . . , n− 1

IF (bi 6= bn)
add the two points (22) in the increasing order to P ;
IF (the corresponding Si is an interval)

add 1 and −1 to NM
END IF
IF (the corresponding Si is a union of disjoint rays)

add −1 and 1 to NM and increase L and R by 1
END IF
IF (the corresponding Si is the real line)

reverse adding (22) to P and increase L and R by 1
END IF

ELSEIF (ai = an)
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increase L and R by 1
ELSEIF (bn 6= 0)

add (23) to P ;
IF (the corresponding Si, which is a ray, is going to the right)

add 1 to NM and increase R by 1
ELSE

add −1 to NM and increase L by 1
END IF

ELSEIF (|ai| ≥ |an|)
increase L and R by 1

END IF
END FOR
add −∞ in front of P and L+ 1 in front of NM
add ∞ at the end of P and −R− 1 at the end of NM
sort P in ascending order breaking ties using −NM;
apply the same permutation to NM;
find the smallest i1 such that the sum of the first i1 elements of NM exceeds ε;
find the largest i2 such that the sum of the first i2 elements of NM exceeds ε;
Γ̄εn := [P (i1), P (i2)].

This algorithm is run by Predictor at each step n = 1, 2, . . . of the on-line
prediction protocol. It is important that both points (22) should be added to
P , even when they coincide. Finding i2 can be done by search from the right,
since the sum of all elements of NM is 0.

Let us suppose that the number K of explanatory variables is bounded above
by a constant. The computation time of our algorithm is O(n log n). Indeed,

a = (y1, . . . , yn−1, 0)′ −Un

[
(U ′nUn + aI )−1U ′n(y1, . . . , yn−1, 0)′

]
and

b = (0, . . . , 0, 1)′ −Un

[
(U ′nUn + aI )−1U ′n(0, . . . , 0, 1)′

]
can be computed in time O(n), and sorting P can be done in time O(n log n)
(see, e.g., [4], Part II).

Appendix C: Instruction manual for the R
package PredictiveRegression

The R package PredictiveRegression implements the three prediction algo-
rithms (IID predictor, Gauss predictor, and MVA predictor) described in this
paper. It is available from CRAN via http://www.r-project.org/.

The program implementing the IID predictor is iidpred. It is called using
the command iidpred(train,test,epsilons,ridge) with the default values
c(0.05,0.01) for epsilons and 0 for ridge. The arguments are:
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train The training set as a matrix of size N × (K + 1). Each row describes an
observation. Columns 1 to K are the explanatory variables, and column
K + 1 is the response variables.

test The test set as a matrix of size N2 × K. Each row corresponds to an
observation (but without the response variable). Columns 1 to K are the
explanatory variables.

epsilons A vector of several significance levels. Each significance level
epsilons[j] is a number between 0 and 1. The default value is (5%, 1%)′.

ridge The ridge coefficient, a nonnegative number. The default value is 0;
setting it to a small positive constant might lead to more stable results.

(There is no argument K† and K† = K is always used.) The output is a list of
three elements:

output[[1]] This is the matrix of lower bounds of prediction intervals. Its
size is N2 × Nε, where N2 is the number of test observations and Nε
is the number of significance levels. The element output[[1]][i, j] of
output[[1]] is the lower bound a of the prediction interval [a, b] for the
ith test observation and for the jth significance level epsilons[j] in the
vector epsilons.

output[[2]] The matrix of upper bounds b, with the same structure as
output[[1]]. Typically a = output[[1]][i, j] and b = output[[2]][i, j]
are real numbers such that a ≤ b. Exceptions: a is allowed to be −∞ and
b is allowed to be ∞; the only case where a > b is a = ∞ and b = −∞
(the empty prediction [a, b]).

output[[3]] The termination code, which is one of:

0 normal termination;

1 illegal parameters (the training and test sets have different numbers of
explanatory variables);

2 too few observations for all significance levels.

This program implements the algorithm described on pp. 30–34 of [21] and, in
more detail, in the previous section. A simple example of its use is

train <- matrix(c(0,10,20,30, 1.01,10.99,21.01,30.99),

nrow=4, ncol=2);

test <- matrix(c(5,15,25), nrow=3, ncol=1);

output <- iidpred(train,test,c(0.05,0.2),0.01);

print(output[[1]]);

print(output[[2]]);
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The programs implementing the MVA predictor and the Gauss predictor
are mvapred and gausspred, respectively. They are called in the same way as
iidpred, with the only exception that gausspred does not require the para-
meter ridge. The termination code for mvapred and gausspred (returned in
output[[3]]) is:

0 normal termination;

1 illegal parameters (the training and test sets have different numbers of expla-
natory variables);

2 too few observations.

An example of use of mvapred is

train <- matrix(c(0,10,20,30, 1.01,10.99,21.01,30.99),

nrow=4,ncol=2);

test <- matrix(c(5,15,25), nrow=3, ncol=1);

output <- mvapred(train,test,c(0.05,0.2),0.01);

print(output[[1]]);

print(output[[2]]);

and an example of use of gausspred is

train <- matrix(c(1,2,3,4, 2.01,2.99,4.01,4.99),

nrow=4, ncol=2);

test <- matrix(c(0,10,20), nrow=3, ncol=1);

output <- gausspred(train,test,c(0.05,0.2));

print(output[[1]]);

print(output[[2]]);

Appendix D: Goodness of definitions of noncon-
formity measures

In this appendix we will check in detail that all our nonconformity measures An
depend on the first n − 1 observations only through the value of Sn−1 (briefly
this was explained in the main part of the paper). For the IID model and the
IID–Gauss model this is obvious.

In the case of the Gauss linear model, to check that the expression on the
right-hand side of (11) depends on the first n− 1 observations only through the
value of Sn−1, we can first check this for Z ′n−1Zn−1, then for γ̂n−1, and finally
for ŷn and σ̂2

n−1 (the definition of the latter has to be expanded).
In the case of the MVA model, we are required to check that the right-hand

side of (14) depends on the first n − 1 observations only through the value of
Sn−1. According to (12), e = y −U c, where c is a known vector. First notice
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that en depends only on the nth observation and that en−1 depends only on the
average of y1, . . . , yn−1 and the average of x1, . . . ,xn−1. Therefore, both en and
en−1 (equivalently,

∑n−1
i=1 ei) depend on the first n−1 observations only through

the value of Sn−1. It remains to show that
∑n−1
i=1 e

2
i depends on the first n− 1

observations only through the value of Sn−1. This immediately follows from the
definition of Sn−1.
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