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Abstract

Conformal predictive systems are a recent modification of conformal predictors
that output, in regression problems, probability distributions for labels of test
observations rather than set predictions. The extra information provided by
conformal predictive systems may be useful, e.g., in decision making problems.
Conformal predictive systems inherit the relative computational inefficiency of
conformal predictors. In this paper we discuss two computationally efficient
versions of conformal predictive systems, which we call split conformal predictive
systems and cross-conformal predictive systems. The main advantage of split
conformal predictive systems is their guaranteed validity, whereas for cross-
conformal predictive systems validity only holds empirically and in the absence
of excessive randomization. The main advantage of cross-conformal predictive
systems is their greater predictive efficiency.
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1 Introduction

Two sister methods that have been widely presented at the COPA series of
workshops are conformal prediction and Venn prediction. Both methods enjoy
provable properties of validity under the IID model but their outputs are very
different: whereas Venn predictors output probabilities (more precisely, upper
and lower probabilities), conformal predictors output p-values (often packaged
as prediction sets). Not only the outputs but also the areas of application are
different for the two methods: Venn predictors are only applicable to classifica-
tion problems, whereas conformal predictors are applicable to both classification
and regression.

A recent development in conformal prediction has been the definition and
study of conformal predictive systems (CPS, which we use for both singular and
plural) in [21], based on the parallel work on predictive distributions in para-
metric statistics (see, e.g., [10, Chapter 12] and [11]). In the case of regression
problems, CPS output predictive distributions; the difference between p-values
and probabilities is often emphasized in statistics, but in the case of CPS the
p-values get arranged into a probability distribution thus essentially becoming
probabilities. This facilitates new uses of conformal prediction, such as automa-
tic decision making [14]. However, for many underlying algorithms CPS (like
conformal predictors in general) are computationally inefficient: CPS require
re-training the underlying algorithm for each test object and each postulated
label for it, and this can be done efficiently only for a narrow class of underlying
algorithms, including Least Squares [21] and Kernel Ridge Regression [17]. The
main aim of this paper is to define and study computationally efficient versions
of CPS without restrictions on the underlying algorithm.

A very recent development in Venn prediction has been the introduction,
in the terminology of this paper, of split Venn–Abers predictive systems in
[8] (COPA 2018), which are another way to produce predictive distributions.
A secondary aim of this paper is to explore several versions of Venn–Abers
predictive systems and compare them with conformal predictive systems.

We start, in Section 2, from defining randomized predictive systems (RPS).
In Section 3 we define their special case, split conformal predictive systems
(SCPS), which are computationally efficient but may suffer loss of predictive ef-
ficiency as compared with CPS (which is indirectly confirmed in our experiments
in Section 6, where SCPS typically suffer larger losses than their competitor that
uses data more efficiently). An important advantage of SCPS is that they are,
similarly to CPS, provably valid; in Section 3, a suitable notion of validity is
defined and the validity of SCPS is demonstrated (by referring to a standard
result).

In Section 4 we build cross-conformal predictive systems (CCPS) on top of
split conformal predictive systems. In principle CCPS can lose their validity
(and therefore, formally are no longer RPS), but in practice they usually satisfy
the requirement of validity, as defined in Section 3 (cf. the experiments in [13]
and Section 6).

Section 6 is devoted to comparing the predictive efficiency of SCPS and
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CCPS and exploring their empirical validity. In this paper, we measure pre-
dictive efficiency of predictive distributions using a loss function called conti-
nuous ranked probability score (CRPS). This loss function and the way it is
applied in our context are defined in the preceding section, Section 5.

Sections 7 and 8 discuss more general issues (to be described momentarily).
Section 9 concludes and gives directions of further research.

The conference version of this paper was published in the Proceedings of
COPA 2018 [16], and the journal version is to be published in Neurocomputing.
As compared with the conference version, in the journal version we added a more
detailed comparison of SCPS and CCPS, a detailed discussion of Venn–Abers
predictive systems (in Section 8), and the analysis of universality of various
predictive systems (in Section 7). An important finding here is that SCPS and
CCPS are universal, whereas Venn–Abers predictive systems are not.

2 Randomized predictive systems

Fix a nonempty measurable space X; we will refer to it as our object space.
Define the observation space as Z := X × R; each observation z = (x, y) ∈ Z
consists of an object x ∈ X and its label y ∈ R.

We will use the following definition, given in [21] (a modification of the
definition in [11, Definition 1]). Let U be the uniform probability measure on
the interval [0, 1].

Definition 1. A function Q : Zn+1 × [0, 1] → [0, 1] is a randomized predictive
system (RPS) if it satisfies the following three requirements:

R1 i For each training sequence (z1, . . . , zn) ∈ Zn and each test object
x ∈ X, the function Q(z1, . . . , zn, (x, y), τ) is monotonically increa-
sing both in y and in τ (where “monotonically increasing” is under-
stood in the wide sense allowing intervals of constancy). In other
words, for each τ ∈ [0, 1], the function

y ∈ R 7→ Q(z1, . . . , zn, (x, y), τ) (1)

is monotonically increasing, and for each y ∈ R, the function

τ ∈ [0, 1] 7→ Q(z1, . . . , zn, (x, y), τ)

is also monotonically increasing.

ii For each training sequence (z1, . . . , zn) ∈ Zn and each test object
x ∈ X,

lim
y→−∞

Q(z1, . . . , zn, (x, y), 0) = 0 (2)

and
lim
y→∞

Q(z1, . . . , zn, (x, y), 1) = 1. (3)
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R2 For any probability measure P on Z, as function of random training ob-
servations z1 ∼ P ,. . . , zn ∼ P , a random test observation z ∼ P , and a
random number τ ∼ U , all assumed independent, the distribution of Q is
uniform:

∀α ∈ [0, 1] : P (Q(z1, . . . , zn, z, τ) ≤ α) = α. (4)

The output
y ∈ R 7→ Q(z1, . . . , zn, (x, y), τ) (5)

of an RPS on a given training sequence z1, . . . , zn, test object x, and random
number τ will be referred to as a predictive distribution (function).

3 Split conformal predictive systems

In this section we will modify the definitions of conformal predictive systems
given in [21] along the lines of [1, Section 2.3] (removing an unnecessary assump-
tion in [15, Section 4.1]). A split conformity measure is a family of measurable
functions Am : Zm+1 → R ∪ {−∞,∞}, m = 1, 2, . . . . The intention is that
Am(z1, . . . , zm+1) measures how large the label ym+1 in zm+1 is, as compa-
red with the labels in z1, . . . , zm. Suppose the training sequence z1, . . . , zn is
split into two parts: the training sequence proper z1, . . . , zm and the calibration
sequence zm+1, . . . , zn; we are given a test object x. The output of the split
conformal transducer determined by the split conformity measure A is defined
as

Q(z1, . . . , zn, (x, y), τ) :=
1

n−m+ 1
|{i = m+ 1, . . . , n | αi < αy}|

+
τ

n−m+ 1
|{i = m+ 1, . . . , n | αi = αy}|+ τ

n−m+ 1
, (6)

where the conformity scores αi, i = m+ 1, . . . , n, and αy, y ∈ R, are defined by

αi := A(z1, . . . , zm, (xi, yi)), i = m+ 1, . . . , n,

αy := A(z1, . . . , zm, (x, y)).

(We omit the lower index m in Am since it is determined by the number of
arguments.) A function is a split conformal transducer if it is the split conformal
transducer determined by some split conformity measure. A split conformal
predictive system (SCPS) is a function which is both a split conformal transducer
and a randomized predictive system.

The standard property of validity (satisfied automatically) for split confor-
mal transducers is that the valuesQ(z1, . . . , zn, z, τ) are distributed uniformly on
[0, 1] when z1, . . . , zn, z are IID and τ is generated independently of z1, . . . , zn, z
from the uniform probability distribution U on [0, 1] (see, e.g., [15, Proposi-
tion 4.1]).
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It is much easier to get an RPS using split conformal transducers than using
conformal transducers. A split conformity measure A is isotonic if, for all m,
z1, . . . , zm, and x, A(z1, . . . , zm, (x, y)) is isotonic in y, i.e.,

y ≤ y′ =⇒ A(z1, . . . , zm, (x, y)) ≤ A(z1, . . . , zm, (x, y
′)) (7)

(cf. [21], the definition of monotonic conformity measures in Section 2). An
isotonic split conformity measure A is balanced if, for any m and z1, . . . , zm, the
set

convA(z1, . . . , zm, (x,R)) := conv {A(z1, . . . , zm, (x, y)) | y ∈ R} (8)

does not depend on x, where conv stands for the convex closure in R. The set (8)
then coincides with convA(z1, . . . , zm,Z) and has one of four forms: (a, b), [a, b),
(a, b], or [a, b], where a < b are elements of the extended real line R∪{−∞,∞};
in this paper, we will be mainly interested in the case convA(z1, . . . , zm,Z) =
(−∞,∞).

Proposition 1. The split conformal transducer (6) based on a balanced isotonic
split conformity measure is an RPS.

Proof. Since property R2 is automatic, we only need to check R1. It is clear
that (6) is increasing in τ (and linear).

To show that it is increasing in y, split, in the context of (6), all i ∈ {m +
1, . . . , n} into three groups: the i in group 1 satisfy αi < αy, the i in group 2
satisfy αi = αy, and the i in group 3 satisfy αi > αy. Then (6) is the total
weight of all i where the weights are 1, τ ∈ [0, 1], and 0 for i in groups 1, 2, and
3, respectively. As y increases, αy increases as well, and therefore, each i can
only move to a lower-numbered group thus increasing (6).

Out of the remaining two conditions, let us check, e.g., (3). It suffices to
notice that, since A is balanced, we have αy ≥ maxi∈{m+1,...,n} αi from some y
on, for any z1, . . . , zn and x.

The next proposition shows that a split conformity measure being isotonic
and balanced is not only a sufficient but also a necessary condition for the
corresponding split conformal transducer to be an RPS.

Proposition 2. If the split conformal transducer based on a split conformity
measure A is an RPS, A is isotonic and balanced.

Proof. Suppose A is not isotonic. Fix m, z1, . . . , zm, x, y, and y′ such that
y < y′ but the consequent of (7) is violated. Then the putative predictive dis-
tribution Q(z1, . . . , zm, (x, y), (x, ·), 1), corresponding to the training sequence
proper z1, . . . , zm, calibration sequence (x, y), test object x, and τ = 1, will not
be increasing: its value at y (which is 1) will be greater than its value at y′

(which is 0.5).
Now suppose A is not balanced. Fix m, z1, . . . , zm, and x, x′ ∈ X such that

convA(z1, . . . , zm, (x,R)) 6= convA(z1, . . . , zm, (x
′,R))
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Algorithm 1 Split Conformal Predictive System

Require: A training sequence (xi, yi) ∈ Z, i = 1, . . . , n.
Require: A test object x ∈ X.

for i ∈ {1, . . . , n−m} do
Define Ci by the condition A(z1, . . . , zm, zm+i) = A(z1, . . . , zm, (x,Ci)).

end for
Sort C1, . . . , Cn−m in the increasing order obtaining C(1) ≤ · · · ≤ C(n−m).
Set C(0) := −∞ and C(n−m+1) :=∞.
Return the predictive distribution (9) for the label y of x.

(cf. (8)). Suppose, for concreteness, that there is y ∈ R such that

convA(z1, . . . , zm, (x,R)) 3 y < convA(z1, . . . , zm, (x
′,R)),

where y < S means ∀s ∈ S : y < s when S ⊆ R. (The other three possible
cases can be analyzed in the same way.) Let the training sequence proper be
z1, . . . , zm, the calibration sequence be (x, y), the test object be x′, and the
random number be τ = 0. Then we will have

lim
y′→−∞

Q(z1, . . . , zm, (x, y), (x′, y′), 0) > 0,

which contradicts R1 (cf. (2)).

Let us say that a split conformity measure A is strictly isotonic if (7) holds
with both “≤” replaced by “<”. A possible implementation of the SCPS based
on a balanced strictly isotonic split conformity measure is shown as Algorithm 1,
where the predictive distribution is defined by

Q(z1, . . . , zn, (x, y), τ) :=
i+τ

n−m+1 if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n−m}
i′−1+(i′′−i′+2)τ

n−m+1 if y = C(i) for i ∈ {1, . . . , n−m},
(9)

where i′ := min{j | C(j) = C(i)} and i′′ := max{j | C(j) = C(i)}. To use the

terminology of [21], the thickness of this predictive distribution is 1
n−m+1 with

the exception size at most n−m.
How computationally efficient Algorithm 1 is depends on how easy to solve

the equation defining Ci is. A standard choice of split conformity measure is

A(z1, . . . , zm, (x, y)) :=
y − ŷ
σ̂

, (10)

where ŷ is a prediction for the label y computed from x as test object and
z1, . . . , zm as training sequence, and σ̂ is an estimate of the quality of ŷ computed
from the same data. In this case the equation

A(z1, . . . , zm, zm+i) = A(z1, . . . , zm, (x,Ci)) (11)
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defining Ci becomes
ym+i − ŷm+i

σ̂m+i
=
Ci − ŷ
σ̂

,

where ŷm+i (resp. ŷ) is the prediction for ym+i (resp. y) computed from xm+i

(resp. x) as test object and z1, . . . , zm as training sequence, and σ̂m+i (resp. σ̂)
is the estimate of the quality of ŷm+i (resp. ŷ) computed from the same data.
The last equation allows us to set

Ci := ŷ +
σ̂

σ̂m+i
(ym+i − ŷm+i) .

For more complicated split conformity measures A, it might be more efficient
to use the expression (6) directly for a grid of values of y.

4 Cross-conformal predictive distributions

Remember that a multiset (or bag) is different from a set in that it can contain
several copies of the same element. A split conformity measure A is a cross-
conformity measure if A(z1, . . . , zm, z) does not depend on the order of its first
m arguments; in other words, if A(z1, . . . , zm, z) only depends on the multiset
*z1, . . . , zm+ and z (where * · · · + is used as the analogue of {· · · } for multisets).

Given a balanced isotonic cross-conformity measure A, the corresponding
cross-conformal predictive system (CCPS) is defined as follows. The training
sequence z1, . . . , zn is randomly split into K non-empty multisets (folds) zSk

,
k = 1, . . . ,K, of equal (or as equal as possible) sizes, where K ∈ {2, 3, . . .}
is a parameter of the algorithm, (S1, . . . , SK) is a partition of the index set
{1, . . . , n}, and zSk

consists of all zi, i ∈ Sk. For each k ∈ {1, . . . ,K} and each
potential label y ∈ R of the test object x, find the conformity scores of the
observations in zSk

and of (x, y) by

αi,k := A(zS−k
, zi), i ∈ Sk, αyk := A(zS−k

, (x, y)),

where S−k := ∪j 6=kSj = {1, . . . , n} \Sk. The corresponding p-values and CCPS
are defined by

py = Q(z1, . . . , zn, (x, y), τ) :=
1

n+ 1

K∑
k=1

|{i ∈ Sk | αi,k < αyk}|

+
τ

n+ 1

K∑
k=1

|{i ∈ Sk | αi,k = αyk}|+
τ

n+ 1
. (12)

The intuition behind (12) is that it becomes an SCPS when the training multis-
ets zS−k

are replaced by a single hold-out training sequence (one disjoint from
and independent of z1, . . . , zn).
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Algorithm 2 Cross-Conformal Predictive System

Require: A training sequence (xi, yi) ∈ Z, i = 1, . . . , n.
Require: A test object x ∈ X.

Split z1, . . . , zn into K folds zSk
as described in text.

Set C := ∅, where C is a multiset.
for k ∈ {1, . . . ,K} do

for i ∈ Sk do
Define Ci,k by the condition A(zS−k

, zi) = A(zS−k
, (x,Ci,k)).

Put Ci,k in C.
end for

end for
Sort C in the increasing order obtaining C(1) ≤ · · · ≤ C(n).
Set C(0) := −∞ and C(n+1) :=∞.
Return the predictive distribution (13) for the label y of x.

An implementation of the CCPS based on a balanced strictly isotonic cross-
conformity measure is shown as Algorithm 2, where the predictive distribution
is now defined by

Q(z1, . . . , zn, (x, y), τ) :=
i+τ
n+1 if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}
i′−1+(i′′−i′+2)τ

n+1 if y = C(i) for i ∈ {1, . . . , n},
(13)

where, as before, i′ := min{j | C(j) = C(i)} and i′′ := max{j | C(j) = C(i)};
the only difference from (9) is that we use n in place of n−m (now all training
observations are used for calibration). The thickness of this predictive distri-
bution is 1

n+1 with the exception size at most n. The size of the multiset C in
Algorithm 2 grows from 0 to n as the algorithm runs. As in the case of SCPS,
it might be easier to use (12) directly if the equations defining Ci,k are difficult
to solve. (Alternatively, one could use (15) below instead of (12).)

Define a separate p-value

pyk :=
1

|Sk|+ 1
|{i ∈ Sk | αi,k < αyk}|

+
τ

|Sk|+ 1
|{i ∈ Sk | αi,k = αyk}|+

τ

|Sk|+ 1
(14)

for each fold (cf. (6)); let us check that py is close to being an average of pyk.
Comparing (12) and (14), we can see that

(n+ 1)py − τ =

K∑
k=1

(|Sk|+ 1) pyk −Kτ,
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which implies

py =

K∑
k=1

|Sk|+ 1

n+ 1
pyk −

K − 1

n+ 1
τ. (15)

The sum
∑K
k=1 . . . is not quite a weighted average of pyk since the sum of the

weights is slightly above 1 (“slightly” assumes K � n), but this is partially
compensated by the subtrahend in (15); overall, the right-hand side of (15) is a
weighted average of pyk and τ , with the weight in front of τ being negative.

According to the intuition behind cross-conformal predictive distributions
described earlier, we will get perfect validity for CCPS if we replace the K
training multisets (the complements to the K folds) by one hold-out training
sequence. But whereas SCPS are provably valid, in the sense of being RPS,
real CCPS are not RPS: see the example in [13, Appendix A]. In experimen-
tal studies, this phenomenon has been demonstrated by [6], who showed the
danger of randomized and extremely unstable underlying algorithms. (Perhaps
such unstable algorithms might be stabilized, to some degree, by using the same
seed of the random numbers generator for each fold, or by averaging conformity
scores over several seeds, or both.) A useful intuition [6] is that the random
p-values coming from different folds (and then essentially averaged by cross-
conformal predictors) are to some degree independent, and so the distribution
of cross-conformal p-values is intermediate between the uniform and the Bates
distributions; therefore, cross-conformal p-values are conservative when not ex-
act (for small significance levels). According to a result in [22] (see, e.g., Table 1
for r := 1), we will get provably valid (but perhaps conservative) p-values if we
multiply the p-values output by a cross-conformal transducer by 2; the empirical
fact observed by [6] is that for randomized and unstable underlying algorithms
even unadjusted p-values output by a cross-conformal transducer are valid but
perhaps overly conservative for interesting (not exceeding 0.5) significance levels.

A more general procedure than the cross-conformal predictor was proposed
in [3] under the name of “aggregated conformal predictor”. Similar methods
might be applicable for producing conformal predictive distributions.

5 Continuous ranked probability score

Suppose the prediction for a label y ∈ R is a distribution function F : R→ [0, 1]
and the observed value of y is yi. The quality of the prediction F in view of the
actual outcome yi is often measured by the continuous ranked probability score

CRPS(F, yi) :=

∫ ∞
−∞

(
F (y)− 1{y≥yi}

)2
dy, (16)

where 1 stands for the indicator function. The lowest possible value 0 is attained
when F is concentrated at yi, and in all other cases CRPS(F, yi) will be positive.
(See, e.g., [5] for further details and references.)

Strictly speaking, (16) is not applicable to split and cross-conformal pre-
dictive distributions, which are somewhat “fuzzy” (the thickness for the former
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Figure 1: The split conformal predictive distribution for a random test object
in the Boston Housing dataset (described in Section 6), the Least Squares
underlying algorithm, and a random 50% : 50% split of the training sequence
into proper training and calibration sequences. The blue solid line corresponds
to τ = 0 and the red dashed line to τ = 1.

is 1
n−m+1 and for the latter it is 1

n+1 ). In practice, the fuzziness can usually be
ignored, even for relatively small datasets: see, e.g., Figure 1. However, concep-
tually we do need to change split and cross-conformal predictive distributions
slightly to remove their fuzziness.

Instead of (9) and (13) we use their crisp modifications

Q(z1, . . . , zn, (x, y)) :=

{
i

n−m if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n−m}
i

n−m if y = C(i) and y 6= C(i+1) for i ∈ {1, . . . , n−m}
(17)

and

Q(z1, . . . , zn, (x, y)) :=

{
i
n if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}
i
n if y = C(i) and y 6= C(i+1) for i ∈ {1, . . . , n},

(18)
respectively; these modifications no longer depend on τ , and the convention for
y = C(i) does not affect the value of CRPS. In cases where the equation (11) or
its analogue for the CCPS are difficult to solve, we can instead use the following
crisp modifications of (6) and (12), respectively:

Q(z1, . . . , zn, (x, y)) :=
1

n−m
|{i = m+ 1, . . . , n | αi ≤ αy}| ,
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Q(z1, . . . , zn, (x, y)) :=
1

n

K∑
k=1

|{i ∈ Sk | αi,k ≤ αyk}| .

The last equation, defining a crisp CCPS, can be rewritten as

Q(z1, . . . , zn, (x, y)) =

K∑
k=1

|Sk|
n
pyk

(cf. (15)), where the separate “p-values” for each fold are now defined as

pyk :=
1

|Sk|
|{i ∈ Sk | αi,k ≤ αyk}|

(they, however, do not satisfy any validity properties).

6 Experiments

The purpose of this section is to compare the predictive performance of SCPS
and CCPS and to recommend the choice of the parameter K for CCPS. Our
choice of conformity measures might well be improved in future work (cf.
Section 7).

In our experiments we use five well-known benchmark datasets, namely
Boston Housing, Diabetes, Yacht Hydrodynamics, Wine Quality, and
Condition Based Maintenance of Naval Propulsion Plants (abbrevia-
ted to Naval Propulsion) available at http://scikit-learn.org/stable/datasets/
(the first two) and the UCI Machine Learning repository [4] (the other ones).
The first three datasets are small: Boston Housing consists of 506 observations,
Diabetes of 442 observations, and Yacht Hydrodynamics of 308 observations;
for them we use test sequences of length l := 100. The Wine Quality dataset
consists of 6497 observations, and we use test sequences of length l := 1000.
Finally, the Naval Propulsion dataset consists of 11,934 observations, and we
use test sequences of length l := 4000.

Given a training sequence (z1, . . . , zn) (where n ∈ {406, 342, 208, 5497, 7934})
and a test sequence (zn+1, . . . , zn+l), the quality of prediction is represented by
the distribution of CRPS(Fi, yi), i = n+ 1, . . . , n+ l, where Fi is the predictive
distribution for the label yi of the test object xi. As already mentioned, the
length l of the test sequence is 100, 1000, or 4000 in our experiments.

In order to obtain boxplots less affected by the split of each dataset into a
training and test sequence and by the random split of each training sequence
into a training sequence proper and a calibration sequence (in the case of SCPS)
or K folds (in the case of CCPS), we use the procedure given as Algorithm 3.
Each dataset is randomly permuted 10 times. The last l observations of each
permutation are used for testing and the rest for training. The first m obser-
vations in the training sequence are used as training sequence proper in the
case of SCPS and consecutive blocks of the training sequence are used as the
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K folds in the case of CCPS (using the scikit-learn KFold procedure with
no randomization). The boxplots in all figures given below are indexed by the
fractions m/n of the training sequence used as the training sequence proper (in
the case of SCPS) or by the numbers K of folds (in the case of CCPS). For each
split and each boxplot we find the l values CRPS(Fi, yi) for all test observations
(the same test sequence is used for each split); the resulting boxplot is based on
all 10 l numbers.

The loops in lines 1, 6, 20, 29, 36, and 41 of Algorithm 3 are over our
underlying algorithms U (Least Squares, Random Forest, and Neural Networks,
as implemented in scikit-learn). In all cases the SCPS and CCPS use the
cross-conformity measure (a special case of (10))

A(z1, . . . , zm, (x, y)) := y − ŷ, (19)

where ŷ is the prediction computed using the underlying algorithm U for the
label of x based on z1, . . . , zm as training sequence. (Remember that each cross-
conformity measure is also a split conformity measure.) Similarly to the CPS
based on Least Squares [21] and Kernel Ridge Regression [17] (as discussed
above), this procedure is far from universal and can be expected to be efficient
only for data that is not too far from being homoscedastic; this will be further
discussed in Section 7 (see, in particular, Proposition 4).

Notice that, when implemented as in Algorithm 3, the SCPS is no longer
provably calibrated (because parameter tuning in lines 16–17 depends on the full
training sequence), and this is why we also check its validity in our experiments.
To check the validity of both SCPS and CCPS, we run Algorithm 3 replacing
CRPS(Fi, yi) with Fi(yi) and replacing boxplots with plots, such as those in
Figure 7 (described in detail at the end of this section).

The Boston Housing dataset consists of 506 observations each with 14 at-
tributes (describing an area of Boston) and a real-valued label (median house
price in that area). Figure 2 shows the performance of the SCPS and CCPS.

The horizontal axis in the left panel is labelled by α ≈ m/n; the values of
α used in our experiments are between 0.1 and 0.9, plus a few more extreme
values. For a given value of α we set m := bαnc. The CRPS loss is computed
for the (crisp) SCPS based on (19) and the three underlying algorithms on
each observation in the test sequence; as described above, we then represent the
resulting 1000 CRPS losses as a boxplot. We can see a characteristic U-shape
(especially pronounced on the left); small m/n lead to a significant increase in
the CRPS loss, and large m/n lead to a slight increase in the CRPS loss but a
significant increase in its variability (the rightmost box and its whiskers tend to
be longer).

The right panel of Figure 2 is similar to the left panel, but now we use
the CCPS and label the horizontal axis by the number K of folds. The usual
advice in cross validation is to use K ∈ {5, 10}, and these two values produce
reasonable results. In fact, the results are remarkably stable and barely depend
on K.

The Diabetes dataset consists of 10 physiological measures on 442 patients,
and the label indicates disease progression after one year. Figure 3 is the
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Figure 2: The performance of the SCPS (left panel) and CCPS (right panel) on
the Boston Housing dataset using Least Squares (LS), Random Forest (RF),
and Neural Networks (NN) as the underlying algorithms, as indicated on the left.
The vertical axis uses the log scale and gives the CRPS. Left panel: the numbers
on the horizontal axis are the fractions m/n of the training sequence used as
the training sequence proper. Right panel: the numbers on the horizontal axis
are the numbers K of folds.

analogue of Figure 2 for this dataset. We can see the same tendencies, with
K ∈ {5, 10} still being reasonable numbers of folds for CCPS.

The Yacht Hydrodynamics is the smallest of our datasets. It consists of
7 attributes including the basic hull dimensions and the boat velocity for 308
experiments, and the task is to predict the residuary resistance of sailing yachts.
Figure 4 suggests that the behavior shown in Figures 2 and 3 is in fact typical
of small datasets.

The Wine Quality dataset has information about 1599 red wines and 4898
white wines. We merge these two groups creating another attribute taking two
values, 0 for white and 1 for red. The label is the quality of wine expressed as
a score between 0 and 10. (The most common labels are 5 and 6, labels 3 and
9 are very uncommon, and labels 0 and 1 are absent.)

Figure 5 is qualitatively similar to Figures 2 and 3. The shape of the plots
for SCPS suggests that we need a reasonable length n − m of the calibration
sequence, such as 100 or 200, since it determines the granularity of the pre-
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Figure 3: The analogue of Figure 2 for the Diabetes dataset.

dictive distributions: as we have already mentioned in connection with (9), the
thickness of the predictive distribution is 1

n−m+1 . Increasing the length of the
calibration sequence further does not improve the predictive performance signi-
ficantly, and starts hurting it when the training sequence proper becomes too
short.

Figure 6 reports the results for the largest dataset that we use, Naval

Propulsion. It contains information about 11,934 simulated experiments, each
described by 16 attributes, and the task is to predict the Gas Turbine Com-
pressor decay state coefficient for a propulsion plant. Here we observe the same
general behavior.

The best results presented in Figures 2–6 are summarized in Table 1. Na-
mely, the table reports the median CRPS losses shown in Figures 2–5 obtained
by optimizing the parameters m/n in the case of SCPS and K in the case of
CCPS. In the majority of cases CCPS perform better than SCPS. But what is
even more important, CCPS are much less sensitive to choosing their parameter
K, and so the best results given in Table 1 are in fact typical for them. In all
our experiments, it is safe to choose any of the standard values for the number
K of folds in the range from 5 to 10.

A natural question is whether the CCPS satisfy the property of validity R2
at least approximately; remember that there are no theoretical validity results
for cross-conformal predictors, and it has been demonstrated theoretically [13,
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Figure 4: The analogue of Figure 2 for the Yacht Hydrodynamics dataset.

Appendix A] and experimentally [6] that a loss of validity is possible. Figure 7
(right panel) shows the distribution of the values (18) for Boston Housing and
K = 5, where z1, . . . , zn is the training sequence, and (x, y) range over the
elements of the test sequence. Namely, it gives the calibration curves, which
are the sets of points (α, F (α)), α ∈ (0, 1) ranging over the possible significance
levels and F (α) being the percentage of the values Q(z1, . . . , zn, (x, y)) for (x, y)
in the test sequence that do not exceed α. The right panels of Figures 8, 9,
10, and 11 are the analogues for the Diabetes, Yacht Hydrodynamics, Wine
Quality, and Naval Propulsion datasets, respectively. Under perfect validity
(4) and an infinitely long test sequence, the calibration curves should be the
diagonals shown as dashed lines on both panels of Figures 7–11; the actual
calibration curves are fairly close. The calibration curves for other K are roughly
similar. As mentioned earlier, we also give calibration results for SCPS (in the
left panels and with m/n ≈ 0.5).

Not only is the efficiency of the CCPS with respect to the CRPS loss better
than that of the SCPS, it can also be argued that the CCPS may be safer from
the point of view of validity. Suppose that, for some reason, we would like to
avoid randomization and use (17) (in the case of SCPS) or (18) (in the case
of CCPS) instead of (9) or (13), respectively. The CCPS is still empirically
valid in our experiments, even in the extreme case of K = 100. On the other
hand, when using (17) in place of (9), the SCPS lose not only theoretical but
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Figure 5: The analogue of Figure 2 for the Wine Quality dataset.

also empirical validity. For example, for Boston Housing and m/n = 0.99 (the
right end of the horizontal axis in the left panel of Figure 2), the length of the
calibration sequence is 4, and so the empirical predictive distribution (17) only
takes values in {0, 0.25, 0.5, 0.75, 1}; the distribution of its values at the true
labels is clearly very different from being uniform.

7 Universal consistency of predictive systems

The conference version [16] of this paper was published in the proceedings of
COPA 2018, which also contained a paper [8] that adapted Venn prediction for
producing predictive distributions. In this and next sections we will analyze
the asymptotic performance of the two approaches to predictive distributions,
using conformal prediction [16] and using Venn prediction [8]. Our conclusion is
that, as implemented in those papers, both approaches are very restrictive. But
whereas the approach based on conformal prediction can be easily rescued, fixing
the approach based on Venn prediction might require sacrificing computational
efficiency. In this section we discuss the former approach.

Informally, an RPS is universally consistent if it gives the true predictive
distribution in the limit, and a class of RPS is universal if it contains such
an RPS. The following formalization is given in [12] and its idea goes back to
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Figure 6: The analogue of Figure 2 for the Naval Propulsion dataset.

Belyaev’s work (see, e.g., [2]).

Definition 2. An RPS Q is consistent for a probability measure P on Z if, for
any bounded continuous function f : R→ R,∫

f dQn − E(f | xn+1)→ 0 (n→∞) (20)

in probability, where:

• Qn is the predictive distribution function (5) for the label of xn+1 based
on the training sequence z1, . . . , zn; the integral

∫
f dQn is not quite stan-

dard since we did not require Qn to be exactly a distribution function,
and we understand it as

∫
f dQ̄n with the measure Q̄n on R defined by

Q̄n((u, v]) := Qn(v+)−Qn(u+) for any interval (u, v] of this form in R;

• E(f | xn+1) is the conditional expectation for f(y) given x = xn+1 assu-
ming (x, y) ∼ P (we fix a version of the conditional expectation);

• the data-generating and coin-tossing mechanisms are zi = (xi, yi) ∼ P ,
i = 1, . . . , n+ 1, and τ ∼ U , assumed all independent.

We say that Q is universally consistent if it is consistent for any probability
measure P on Z. A class of RPS is universal if it contains a universally consistent
RPS.
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Table 1: Best results for the median CRPS loss for SCPS and CCPS for the five
datasets and three underlying algorithms.

Dataset underlying algorithm SCPS CCPS
Boston Housing Least Squares 1.726 1.533
Boston Housing Random Forest 0.972 0.906
Boston Housing Neural Network 1.240 1.211
Diabetes Least Squares 23.74 23.18
Diabetes Random Forest 24.23 24.33
Diabetes Neural Network 22.76 22.10
Yacht Hydrodynamics Least Squares 3.840 3.910
Yacht Hydrodynamics Random Forest 0.1615 0.1322
Yacht Hydrodynamics Neural Network 0.1944 0.1725
Wine Quality Least Squares 0.2810 0.2771
Wine Quality Random Forest 0.1681 0.1618
Wine Quality Neural Network 0.2711 0.2693
Naval Propulsion Least Squares 0.0007812 0.0007866
Naval Propulsion Random Forest 0.0001259 0.0001242
Naval Propulsion Neural Network 0.003051 0.003360

The requirement of a class of RPS being universal means that it does not
impose insurmountable limits to getting the data-generating distribution right.

We will also apply Definition 2 to predictive systems that are not required to
satisfy the validity condition R2 in Definition 1 (such as CCPS and predictive
systems based on Venn prediction). The following theorem assumes that the
notions of SCPS and CCPS have been slightly extended by allowing randomized
conformity measures (see, e.g., [12, Section 9] for details).

Theorem 3. The class of SCPS is universal. The class of CCPS is also uni-
versal.

Proof. The class of SCPS being universal is a simplified version of [12, Theo-
rem 31]. For a fixed K, a K-fold CCPS outputs predictive distribution functions
within O(1/n) of the average of the predictive distribution functions output by
the component SCPS (see (15)), which immediately implies that the class of
CCPS is also universal.

Theorem 3 says that, in principle, conformal predictive systems can adapt
to any data-generating distribution. However, specific conformal predictive sy-
stems considered in literature are often not universally consistent. This is par-
ticularly true for predictive systems based on full (rather than split or cross-)
conformal prediction, where computational efficiency imposes severe restrictions
on the underlying algorithm.

As discussed earlier, an example of a non-universal class of RPS is provided
by [21]: they are based on the method of Least Squares and therefore far from
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Figure 7: The calibration curves (i.e., the distributions of Q(z1, . . . , zn, (x, y))
over the test sequence) for the SCPS and CCPS on the Boston Housing dataset.

being universal. The extension of Least Squares to Kernel Ridge Regression
given in [17] still does not produce universality, even for universal kernels: the
Kernel Ridge Regression Prediction Machine introduced in [17] is not universal
since the shape of its predictive distributions is not tailored to a specific test
observation [17, Section 7].

Conformal predictive systems based on (10) are also not universal: they
allow any shape of the asymptotic predictive distribution function, but this
shape is adapted to the test object at hand only by shifting and scaling it
(by shifting a distribution function F we mean replacing it by the distribution
function y 7→ F (y − c) for some c ∈ R, and by scaling we mean replacing it
by y 7→ F (y/σ) for some σ > 0). The class (19) of split and cross-conformity
measures considered in the experimental section is even more restrictive: the
asymptotic shape of the predictive distribution function is adapted to the test
object at hand only by a shift. We will state in detail only the claim about the
class (19), since it was the main class used in this paper, and it is also the class
used in [21] and [17].

Let us call, for want of a better name, split conformity measures of the form
(19) simple. Suppose the probability measure P generating the observations
(x, y) satisfies E |y| <∞ for (x, y) ∼ P . Set A(x, y) := y− ŷ, where ŷ := E(y | x)
is a fixed version of the conditional expectation of y given x for (x, y) ∼ P . The
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Figure 8: The analogue of Figure 7 for the Diabetes dataset.

ideal simple conformal predictive system (ISCPS) for P is defined as

Q(z1, . . . , zn, (x, y), τ) :=
1

n+ 1
|{i = 1, . . . , n | A(xi, yi) < A(x, y)}|

+
τ

n+ 1
|{i = 1, . . . , n | A(xi, yi) = A(x, y)}|+ τ

n+ 1
, (21)

where x is the test object. The intuition behind this definition is that we are
given P in advance and, therefore, can use the whole training sequence as the
calibration sequence; a training sequence proper is not needed as A is already
the ideal simple conformity measure. An ISCPS is an idealization of SCPS
corresponding to an infinitely long training sequence proper (allowing a perfect
estimate of E(y | x)). Since CCPS are essentially combinations of SCPS, our
conclusions will also be applicable to CCPS.

Remember that the Kolmogorov distance between distribution functions F
and G is

K(F,G) := sup
u∈R
|F (u)−G(u)| .

Modify it by setting

K ′(F,G) := inf
c∈R

sup
u∈R
|F (u− c)−G(u)| .
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Figure 9: The analogue of Figure 7 for the Yacht Hydrodynamics dataset.

This is not a metric anymore: K ′(F,G) = 0 only means that F and G coincide to
within a shift left or right. The following proposition spells out the observation
above that, in the case of a simple conformity measure, the asymptotic shape of
the predictive distribution function is adapted to the test object at hand only
by a shift.

Proposition 4. Let Q be an ISCPS. For all n, all z1, . . . , zn ∈ Z, all x, x′ ∈ X,
and all τ ∈ [0, 1],

K ′ (Q(z1, . . . , zn, (x, ·), τ), Q(z1, . . . , zn, (x
′, ·), τ)) = 0.

Proof. Since A(x, y) = y − ŷ, Q(z1, . . . , zn, (x, ·), τ) is of the form F (· − ŷ) and
Q(z1, . . . , zn, (x

′, ·), τ) is of the form F (· − ŷ′) for some numbers ŷ and ŷ′ and
some function F (see (21)). Therefore, they are shifts of each other.

Proposition 4 will remain true if ŷ := E(y | x) in the definition of a simple
conformity measure is replaced by ŷ := f(x) for any function f : X→ R.

The idealized version of the split conformity measure (10) is

A(x, y) :=
y − f(x)

σ(x)
(22)
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Figure 10: The analogue of Figure 7 for the Wine Quality dataset.

for some positive function σ : X → (0,∞). Let us modify further the Kolmo-
gorov distance by setting

K ′′(F,G) := inf
c∈R,σ>0

sup
u∈R

∣∣∣∣F (u− cσ

)
−G(u)

∣∣∣∣ .
Proposition 4 will continue to hold if we allow ISCPS to use idealized split
conformity measures (22) and replace K ′ by K ′′.

Using split and cross-conformal predictive systems rather than full conformal
predictive systems makes it much easier to design adaptive conformity measures.
One possibility is to use the Nadaraya–Watson estimate (introduced by [7] and
[23] in the case of regression and [9] in the case of density estimation)

F (y | x) =

∑m
i=1 Σ

(
y−yi
hy

)
K
(
x−xi

hx

)
∑m
i=1K

(
x−xi

hx

) (23)

of the conditional distribution function for computing the conformity score of
(x, y) given (x1, y1), . . . , (xm, ym)). The parameters of the estimator (23) are a
distribution function Σ (e.g., the Heaviside step function or a smooth one, such
as the sigmoid Σ(u) := 1/(1 + e−u), in which case there is a unique solution
to the equations in Algorithms 1 and 2), a kernel K (such as the Gaussian
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Figure 11: The analogue of Figure 7 for the Naval Propulsion dataset.

K(u) := exp(−u2/2)), and bandwidths hx > 0 and hy > 0. This is the topic of
[20].

8 Split Venn–Abers predictive systems

In this section we discuss an alternative to RPS introduced in [8] and based on
Venn prediction. We will obtain a modification of RPS defined as follows (cf.
Definition 1).

Definition 3. A function Q : Zn+1 × {0, 1} → [0, 1] is called an imprecise
predictive system (IPS) if it satisfies the following two requirements:

i For each training sequence (z1, . . . , zn) ∈ Zn and each test object x ∈
X, the function Q(z1, . . . , zn, (x, y), τ) is monotonically increasing both
in y and in τ . In other words, for either τ ∈ {0, 1}, the function (1) is
monotonically increasing, and for each y ∈ R,

Q(z1, . . . , zn, (x, y), 0) ≤ Q(z1, . . . , zn, (x, y), 1).

ii For each training sequence (z1, . . . , zn) ∈ Zn and each test object x ∈ X,
we have (2) and (3).
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As compared with Definition 1, we drop the validity condition R2 (which
may be stated separately in some form when needed).

We start the definition of a Venn-type IPS from an analogue of a conformity
measure.

Definition 4. A regressor is a family of measurable functions Am : Zm×X→
R, m = 1, 2, . . . .

The intention is that Am(z1, . . . , zm, x) is the prediction for the label of x com-
puted from z1, . . . , zm as training sequence. As before, we drop the lower index
m in Am. Now we can define a new kind of predictive systems.

Definition 5. Split the training sequence z1, . . . , zn into two parts: the training
sequence proper z1, . . . , zm and the calibration sequence zm+1, . . . , zn. Suppose
we are given a test object x and a possible label y ∈ R for it. The output
Q(z1, . . . , zn, (x, y), τ), τ ∈ {0, 1}, of the split Venn–Abers predictive system of
type T determined by the regressor A, where T ∈ {1, 2, 3}, is defined as follows:

• set si := A(z1, . . . , zm, xi) for i = 1, . . . , n and set s := A(z1, . . . , zm, x);

• fit an isotonic regression g : R → R to the training sequence (si, y
∗
i )

extended by adding (s, τ), where

y∗i :=

{
0 if yi ≤ y
1 otherwise

(24)

and the range of i is

i =


m+ 1, . . . , n if T = 1

1, . . . ,m if T = 2

1, . . . , n if T = 3;

the corresponding optimization problem is

(τ − g(s))2 +
∑
i

(y∗i − g(si))
2 → min (25)

under the restriction that g is monotonically increasing;

• set

Q(z1, . . . , zn, (x, y), τ) := 1−
|{i = m+ 1, . . . , n | g(si) = g(s), y∗i = 1}|+ τ

|{i = m+ 1, . . . , n | g(si) = g(s)}|+ 1
. (26)

An IPS is a split Venn–Abers predictive system (SVAPS) of type T if it is the
split Venn–Abers predictive system determined by some regressor.
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Intuitively, a SVAPS tries to answer the question whether the label of the
test object x exceeds y based on the answers (24) for training objects; the answer
is given by the fraction in (26). Notice that:

• SVAPS satisfy the definition of an IPS. Indeed, suppose, e.g., that y is
sufficiently large (the case y → ∞). Then we will have y∗i = 0 for all i.
For τ = 0 we will have g = 0 and the fraction in (26) will be 0. The
argument for the case y → −∞ is analogous.

• The integral
∫
f dQn in (20) may depend on τ , and in the definitions

of consistency and universality for SVAPS we require that (20) hold for
either value of τ .

SVAPS of type 1 were introduced in [8, Section 3.1.2] as the most direct
application of the Venn–Abers methodology [18, 19] to the problem of probabi-
listic regression. Since the arguments si and s of the function g in (26) are also
used in the condition (25), the expressions g(si) and g(s) in (26) are determined
uniquely; therefore, the definition (26) of type 1 SVAPS is unambiguous.

SVAPS of type 2 were introduced in [8, Section 3.1.3] as a computational
simplification of SVAPS of type 1; additionally, [8, Section 3.1.3] removes the
first addend in (25) (which is the key step in achieving computational efficiency).
For this version of SVAPS, the arguments si and s of the function g in (26) are
not necessarily used in the condition (25), and so the expressions g(si) and g(s)
in (26) may not be determined uniquely. Somewhat arbitrarily, we may define
g(t), for any t ∈ R, as g(sj) where sj is the nearest neighbour to t among si,
i ∈ {1, . . . ,m}; in the case of ties, we choose j as small as possible. This makes
the definition (26) of type 2 SVAPS also unambiguous.

SVAPS of type 3 are a natural combination of SVAPS of types 1 and 2;
they are similar to SVAPS of type 1 in that the definition (26) is for them
unambiguous.

The validity guarantees for SVAPS are very different from those that we
have for CPS and SCPS; see, e.g., [12, Appendix B].

The following simple example illustrates severe restrictions of SVAPS (of any
type), even when the training sequence is very long, stemming from the score
A(z1, . . . , zm, x) being just one number.

Example 5. The true distribution generating the observations (x, y) produces
x = 0 and x = 1 with equal probabilities. Given x = 0, we have y = 0 with
probability 1. Given x = 1, we have y = −1 or y = 1 with equal probabili-
ties. Let us check that SVAPS are not consistent, even for the ideal regressor
A(z1, . . . , zm, x) := 0. In the notation of Definition 5, we have s = 0 and si = 0
for i = 1, . . . , n. The asymptotic predictive distribution is shown in Figure 12,
concentrated on {−1, 0, 1}, and assigns probabilities 1/4, 1/2, and 1/4 to −1, 0,
and 1, respectively. It is very poor; the expected CRPS (as defined in Section 5)
for it is 3/8 instead of the ideal 1/4.

Example 5 makes it plausible that the SVAPS are not universal; now we
state this formally.

24



Figure 12: The asymptotic predictive distribution produced by SVAPS for any
x in Example 5.

Proposition 6. The SVAPS are not universal.

Proof. Let the true probability measure be the one described in Example 5. Let
n→∞ and set m := bn/2c. Set

A0 := A(z1, . . . , zm, 0)

A1 := A(z1, . . . , zm, 1)

(in Example 5 we only considered the case A1 = A0 = 0). If A1 = A0, we are
in the situation of Example 5; see Figure 12. For a continuous f : R → [0, 1]
satisfying

f(u) =

{
1 if y ≥ 0.6

0 if y ≤ 0.4
(27)

we will have

lim
xn+1=0
n→∞

∫
f dQn =

1

4
6= 0 = lim

xn+1=0
n→∞

E(f | xn+1) a.s. (28)

and

lim
xn+1=1
n→∞

∫
f dQn =

1

4
6= 1

2
= lim
xn+1=1
n→∞

E(f | xn+1) a.s. (29)

If A1 < A0, the predictive distributions are as shown in Figure 13 (the
weights for −1, 0, and 1 are 0, 3/4, and 1/4, respectively, when x = 0, and 1/2,
1/4, and 1/4, respectively, when x = 1). Taking the same function f , satisfying
(27), we will still have (28) and (29).

If A0 < A1, the predictive distributions are as shown in Figure 14 (the
weights for −1, 0, and 1 are 1/4, 3/4, and 0, respectively, when x = 0, and
1/4, 1/4, and 1/2, respectively, when x = 1). For a continuous f : R → [0, 1]
satisfying

f(u) =

{
1 if y ≤ −0.6

0 if y ≥ −0.4
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Figure 13: The asymptotic predictive distributions produced by SVAPS when
A1 < A0 for x = 0 (left panel) and x = 1 (right panel).

Figure 14: The asymptotic predictive distributions produced by SVAPS when
A0 < A1 for x = 0 (left panel) and x = 1 (right panel).

we will still have (28) and (29).

Remark 1. In the proof of Proposition 6 we checked that the SVAPS are not
universal directly, using the definition (20). This shows in their inferior CRPS,
as in Example 5. If A1 = A0, we are in the situation of Example 5. If A1 < A0,
the expected CRPS is 5/16, which exceeds the ideal value 1/4. And if A0 < A1,
the expected CRPS is also 5/16.

The asymptotic problem of non-universality for SVAPS can be avoided by
modifying, for each y ∈ R, the data sequence (including the training sequence
proper) as follows: replace each yi by 1{yi≤y}. There are, however, two problems
with this procedure:

• Loss of computational efficiency; now processing even moderately large
datasets becomes infeasible.

• Loss of predictive efficiency for small samples as now the labels become
less informative (only taking values 0 or 1).
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In this section we have only discussed SVAPS in detail, but the same ar-
gument shows that cross-Venn–Abers predictive systems (defined in a natural
way) inherit the lack of universality.

9 Conclusion

In this paper we have given definitions and described ways of computing split
and cross-conformal predictive distributions. We have studied their empirical
performance using five benchmark datasets and three underlying algorithms.
Cross-conformal predictive distributions are more efficient and, in their non-
randomized version, sometimes closer to being valid. It would be interesting to
check the validity of our conclusions on a wider range of datasets and underlying
algorithms.

The specific split and cross-conformity measures used in this paper, all of
which have the form (19), are not fully adaptive, as discussed in Section 7,
whereas in general SCPS and CCPS are universal (unlike SVAPS, as pointed
out in Section 8). Replacing (19) by the more general (10) somewhat impro-
ves the attainable flexibility, but designing fully flexible cross-conformal pre-
dictive systems based on efficient non-parametric predictive systems, such as
the Nadaraya–Watson system (23), appears to us a particularly interesting di-
rection of further research.
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Algorithm 3 Experiments in Section 6

Require: A dataset of size n+ l consisting of observations z = (x, y), y ∈ R.
1: for U ∈ {LS,RF,NN} do
2: for α ∈ {0.01, 0.05, . . . , 0.99} do
3: Create an empty multiset BU,α.
4: end for
5: end for
6: for U ∈ {LS,RF,NN} do
7: for K ∈ {2, 3, . . . , 100} do
8: Create an empty multiset B′U,K .
9: end for

10: end for
11: for 10 times do
12: Randomly permute the dataset obtaining a sequence z1, . . . , zn+l.
13: Use z1, . . . , zn as the training and zn+1, . . . , zn+l as the test sequence.
14: Apply feature scaling by fitting on the training sequence and
15: transforming the training and test sequences.
16: Tune the parameters using 3-fold cross-validation on the training
17: sequence.
18: for α ∈ {0.01, 0.05, . . . , 0.99} do
19: m := bαnc.
20: for U ∈ {LS,RF,NN} do
21: Train an SCPS based on U using z1, . . . , zm as training sequence
22: proper and zm+1, . . . , zn as calibration sequence.
23: Put all CRPS(Fi, yi), i ∈ {n+ 1, . . . , n+ l} in BU,α, where Fi is
24: the output of the SCPS for xi.
25: end for
26: end for
27: for K ∈ {2, 3, . . . , 100} do
28: Put all zi, i ∈ {d(k−1)n/Ke+1, dkn/Ke}, into fold k, k ∈ {1, . . . ,K}.
29: for U ∈ {LS,RF,NN} do
30: Train a CCPS based on U using these folds.
31: Put all CRPS(Fi, yi), i ∈ {n+ 1, . . . , n+ l} in B′U,K , where Fi is
32: the output of the CCPS for xi.
33: end for
34: end for
35: end for
36: for U ∈ {LS,RF,NN} do
37: for α ∈ {0.01, 0.05, . . . , 0.99} do
38: Show the multiset BU,α as boxplot.
39: end for
40: end for
41: for U ∈ {LS,RF,NN} do
42: for K ∈ {2, 3, . . . , 100} do
43: Show the multiset B′U,K as boxplot.
44: end for
45: end for
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