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Abstract

Most existing examples of full conformal predictive systems, split conformal pre-
dictive systems, and cross-conformal predictive systems impose severe restric-
tions on the adaptation of predictive distributions to the test object at hand.
In this paper we develop split conformal predictive systems that are fully adap-
tive. Our method consists in calibrating existing predictive systems; the input
predictive system is not supposed to satisfy any properties of validity, whereas
the output predictive system is guaranteed to be calibrated in probability.
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1 Introduction

Conformal predictive distributions were inspired by the work on predictive dis-
tributions in parametric statistics (see, e.g., [7], Chapter 12, and [8]) and first
suggested in [14]. As usual, we will refer to algorithms producing conformal
predictive distributions as conformal predictive systems (CPS, used in both sin-
gular and plural senses).

Conformal predictive systems are built on top of traditional prediction al-
gorithms to ensure a property of validity usually referred to as calibration in
probability [5]. Several versions of the Least Squares Prediction Machine, CPS
based on the method of Least Squares, are constructed in [14]. This construc-
tion is slightly extended to cover ridge regression and then further extended
to nonlinear settings by applying the kernel trick in [12]. However, even after
this extension the method is not fully adaptive, even for a universal kernel. As
explained in [12, Section 7], the universality of the kernel shows in the ability
of the predictive distribution function to take any shape; however, the CPS is
still inflexible in that the shape does not depend, or depends weakly, on the test
object.

For many base algorithms full CPS (like full conformal predictors in general)
are computationally inefficient, and [13] define and study computationally effi-
cient versions of CPS, namely split conformal predictive systems (SCPS) and
cross-conformal predictive systems (CCPS). However, specific SCPS and CCPS
proposed in [13] are based on the split conformity measure

A(z1, . . . , zm, (x, y)) :=
y − ŷ
σ̂

, (1)

where ŷ is a prediction for y computed from x as test object and z1, . . . , zm as
training sequence, and σ̂ > 0 is an estimate of the quality of ŷ computed from
the same data. The predictive distributions corresponding to (1) are slightly
more adaptive: not only their location but also their scale depends on the test
object x. (The conformity measures used in [14] and [12] correspond to (1)
with σ̂ := 1 and so implicitly assume homoscedasticity.) Ideally, however, we
would like to allow a stronger dependence on the test object. This paper follows
[10, Section 10] in using a method that is fully flexible and, for a suitable base
algorithm, adapts fully to the test object (cf. Proposition 2 below). Whereas
the emphasis in [10] is on asymptotic optimality only, one of the purposes of
this paper is to propose practically useful solutions.

We start by defining, in Section 2, algorithms outputting predictive distri-
butions, which we call predictive systems (when randomization is not allowed)
or randomized predictive systems (when it is allowed). In the next section we
define split conformal predictive systems. Section 4 is devoted to validity. In
particular, we explain that split conformal predictive systems are always valid,
in the sense of being calibrated in probability, under the IID assumption. The
IID assumption, standard in conformal prediction, is that the observations are
generated in the IID fashion (sometimes this assumption is slightly weakened to
assuming an online compression model, as in [11, Chapter 8]). In Section 5 we
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discuss conformalizing ideal predictive systems under the IID assumption, al-
though in this context this assumption becomes less essential. Section 6 contains
some experimental results. Section 7 states directions of further research.

This paper and [10] establish very different versions of the generic notion of
efficiency. Whereas [10] studies an asymptotic version of efficiency, this paper
concentrate on a rather narrow but small-sample version. It is a less conservative
form of the medical principle “first, do no harm”: if a predictive system is
already perfect, conformalizing it should not make it much worse.

2 Predictive systems and randomized predictive
systems

Let us fix (until Section 6) a nonempty measurable space X that will serve as
our object space, and let Z := X × R stand for our observation space. Each
observation z = (x, y) ∈ Z consists of an object x ∈ X and its label y ∈ R.

Definition 1. A measurable function Q : ∪∞n=1Z
n+1 → [0, 1] is called a predic-

tive system (PS) if:

1. For each n ∈ {1, 2, . . . }, each training sequence (z1, . . . , zn) ∈ Zn, and
each test object x ∈ X, the function Q(z1, . . . , zn, (x, y)) is monotonically
increasing in y (where “monotonically increasing” is understood in the
wide sense allowing intervals of constancy).

2. For each n ∈ {1, 2, . . . }, each training sequence (z1, . . . , zn) ∈ Zn, and
each test object x ∈ X,

lim
y→−∞

Q(z1, . . . , zn, (x, y)) = 0

and
lim
y→∞

Q(z1, . . . , zn, (x, y)) = 1.

The output y ∈ R 7→ Q(z1, . . . , zn, (x, y)) of a PS on a given training se-
quence z1, . . . , zn and test object x will be referred to as a predictive distribu-
tion (function) and will sometimes be denoted Qz1,...,zn,x. It is a distribution
function in the sense of probability theory except that we do not require that it
be right-continuous.

We also need the notion of a randomized predictive system.

Definition 2. A measurable function Q : ∪∞n=1Z
n+1 × [0, 1]→ [0, 1] is called a

randomized predictive system (RPS) if:

1. For each n ∈ {1, 2, . . . }, each training sequence (z1, . . . , zn) ∈ Zn, and each
test object x ∈ X, the function Q(z1, . . . , zn, (x, y), τ) is monotonically
increasing in y and monotonically increasing in τ .
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2. For each n ∈ {1, 2, . . . }, each training sequence (z1, . . . , zn) ∈ Zn, and
each test object x ∈ X,

lim
y→−∞

Q(z1, . . . , zn, (x, y), 0) = 0

and
lim
y→∞

Q(z1, . . . , zn, (x, y), 1) = 1.

The output y ∈ R 7→ Q(z1, . . . , zn, (x, y), τ) of an RPS on a given training
sequence z1, . . . , zn, test object x, and (random) number τ will be referred to as
a predictive distribution (function) and will sometimes be denoted Qz1,...,zn,x,τ .

Notice that Definition 2 does not include any requirement of validity, unlike
the corresponding definitions in [12–14] and [10]: in this paper we follow the
terminology of [7, Chapter 12] rather than [8]. Validity will be discussed in
Section 4.

3 Split conformal calibration

If A is a predictive system, the split conformal predictive system (SCPS) cor-
responding to A (or the split-conformalized version of A) is defined as follows.
The training sequence z1, . . . , zn is split into two parts: the training sequence
proper z1, . . . , zm and the calibration sequence zm+1, . . . , zn, where we assume
1 ≤ m < n. Given a test object x, the output of CA is defined as

CAz1,...,zn,x,τ (y) :=
1

n−m+ 1
|{i = m+ 1, . . . , n | αi < αy}|

+
τ

n−m+ 1
|{i = m+ 1, . . . , n | αi = αy}|+ τ

n−m+ 1
, (2)

where the conformity scores αi, i = m+ 1, . . . , n, and αy, y ∈ R, are defined by

αi := A(z1, . . . , zm, (xi, yi)), i = m+ 1, . . . , n,

αy := A(z1, . . . , zm, (x, y)).

This follows the definition of a split conformal transducer in [13].
For simplicity, let us assume that A never takes values 0 and 1. When

considered as a split conformity measure, as defined in [13, Section 3], such a
predictive system is balanced and isotonic, which makes it possible to apply
Proposition 3.1 in [13] and conclude that the SCPS CA is an RPS (and satisfies
the property of validity introduced in Section 4 below). We refer to this method,
namely transforming predictive systems to the corresponding split conformal
predictive systems, as split conformal calibration.

The SCPS CA can be implemented by directly coding the definition (2) using
a grid of values of y (as we do for the experiments in Section 6). Algorithm 1
describes another implementation of CA. It defines the predictive distribution
apart from a finite number of points y (and so the values at those points do not
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Algorithm 1 Split Conformal Calibration

Require: Training sequence (xi, yi) ∈ Z, i = 1, . . . , n, and positive integer
m < n.

Require: Test object x ∈ X and random number τ ∈ [0, 1].
for i ∈ {1, . . . , n−m} do

pi := A(z1, . . . , zm, zm+i)
end for
sort p1, . . . , pn−m in the increasing order obtaining p(1) < · · · < p(k)
for j ∈ {1, . . . , k} do

nj :=
∣∣{i = 1, . . . , n−m | pi = p(j)

}∣∣
mj := sup{y | A(z1, . . . , zm, (x, y)) < p(j)}
Mj := inf{y | A(z1, . . . , zm, (x, y)) > p(j)}

end for
return the predictive distribution CA given by (3) for the label y of x.

affect, e.g., CRPS as defined by (10) in Section 6); we can set the probability
interval conv({CAz1,...,zn,x,τ (y) | τ ∈ [0, 1]}) at those points y to the union of the
prediction intervals at the adjacent points without a substantial change to the
predictive system. Some of the pi, i = 1, . . . , n−m, in Algorithm 1 may coincide,
so we can only say that k ∈ {1, . . . , n−m} rather than k = n−m (notice that the
sequence p(j), j = 1, . . . , k, is strictly increasing). The predictive distribution
that it outputs is

CAz1,...,zn,x,τ (y) =
τ

n−m+1 if y < m1
n1+···+nj−1+τnj+τ

n−m+1 if y ∈ (mj ,Mj), j ∈ {1, . . . , k}
n1+···+nj+τ
n−m+1 if y ∈ (Mj ,mj+1), j ∈ {1, . . . , k − 1}

n1+···+nk+τ
n−m+1 = n−m+τ

n−m+1 if y > Mk.

(3)

Algorithm 1 is a slight generalization of Algorithm 1 in [13]. The latter makes
an assumption (the base distribution functions Az1,...,zn,x being continuous and
strictly increasing) implying that mj = Mj for all j ∈ {1, . . . , k}; in our current
general context we can only say that

m1 ≤M1 ≤ m2 ≤M2 ≤ · · · ≤ mk ≤Mk.

Location-scale models

The split conformity measure (1), which is used in [13], is not covered directly
by our definition since it does not have to take values in [0, 1]. But this can
be easily arranged: e.g., we can apply a fixed strictly increasing distribution
function F : R → [0, 1] to (1) to make sure the split conformity measure takes
values in [0, 1]. This makes the approach based on (1) a special case of this
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paper’s approach corresponding to the location-scale families

Fµ,σ(y) := F

(
y − µ
σ

)
. (4)

Notice that the conformalized predictive distributions will not depend on the
choice of F as long as F is strictly increasing; e.g., we can fix it to the standard
Gaussian distribution function (and this will not mean that we are relying on
the Gaussian assumption).

Specializing (4) by setting σ := 1, we obtain a class containing the predictive
systems considered in [12, 14]. This class will be used in our experiments in
Section 6.

4 Validity of conformal calibration

An RPS Q is calibrated in probability if, for any probability measure P on Z,
as function of random training observations Z1 ∼ P ,. . . , Zn ∼ P , a random
test observation Z ∼ P , and a random number τ ∼ U (U being the uniform
probability measure on [0, 1]), all assumed independent, the distribution of Q is
uniform:

∀α ∈ [0, 1] : P (Q(Z1, . . . , Zn, Z, τ) ≤ α) = α. (5)

(This was included as Requirement R2 in the definition of an RPS in [12–14]
and [10].)

Split conformal predictive systems are automatically calibrated in proba-
bility, in the sense of satisfying (5), under the IID assumption. If F is the
distribution function produced for a test object X∗, F := CAZ1,...,Zn,X∗,τ , then
F (Y ∗) will be distributed uniformly on [0, 1], where Y ∗ is the true label of
X∗. Notice, however, that for a test sequence Z∗i = (X∗i , Y

∗
i ), i = 1, . . . , l,

Fi(Y
∗
i ) will not be independent, even though distributed uniformly on [0, 1],

where Fi := CAZ1,...,Zn,X∗
i ,τi

is the distribution function produced for X∗i . To

make Fi(Y
∗
i ) not only distributed uniformly on [0, 1] but also independent, we

can use the semi-online protocol, predicting the labels Y ∗i of X∗i , i = 1, . . . , k,
sequentially and adding Z∗i to the calibration sequence as soon as it is processed.
This is asserted in the following proposition and might be useful for debugging
implementations of split-conformalized predictive systems.

Proposition 1. Suppose Z1, . . . , Zn, Z
∗
1 , Z

∗
2 , . . . is an IID sequence of observa-

tions and (τ1, τ2, . . . ) ∈ [0, 1]∞ is independent and uniformly distributed. Then
the random variables

CAZ1,...,Zn,Z∗
1 ,...,Z

∗
i−1,X

∗
i ,τi

(Y ∗i )

are independent and uniformly distributed on [0, 1], where X∗i and Y ∗i are the
components of Z∗i = (X∗i , Y

∗
i ).

This proposition gives a stronger property of validity, online calibration in prob-
ability, for split conformal prediction.
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Cross-conformal calibration

We can easily combine several split conformal predictive systems as defined
in the previous section into a cross-conformal predictive system, exactly in the
same way as in [13, Section 4]. The resulting RPS will lose automatic calibration
in probability (5) but will use the available data more efficiently.

Full conformal calibration

Let us say that a predictive system A is invariant if, for any n ∈ {1, 2, . . . }
and any z1, . . . , zn, z ∈ Z, the value A(z1, . . . , zn, z) does not depend on the
order of z1, . . . , zn. The full conformal predictive system (or simply conformal
predictive system) corresponding to an invariant predictive system A is defined
in [14, Section 2]. This definition, however, is applicable to a narrower class of
predictive systems than that in the definition of the split conformal predictive
systems. For example, it will be applicable if we assume, additionally, that, for
any n ∈ {1, 2, . . . }, any x1 ∈ X, and any z2, . . . , zn+1, A((x1, y1), z2, . . . , zn+1)
is monotonically decreasing in y1 ∈ R [14, Section 2.2].

Full conformal predictive systems are automatically calibrated in probability
[14, Section 2].

5 Efficiency of conformalizing ideal predictive
systems

In this section we will explore the efficiency of conformal calibration in the
situation where the base predictive system A is the ideal one. In this case we
cannot improve A, and we are interested in how much worse CA can become as
compared with A. (Similar questions were asked by Wasserman and by [2].) If,
for any A, CA is almost as good as A, we can say that the calibration method
is fully adaptive.

Let P be the true probability measure on Z generating the observations
z1, z2, . . . in the IID manner. A conditional distribution function for P is a
function A : Z→ [0, 1] such that:

� for each x ∈ X, as function of y ∈ R, A(x, y) is a distribution function
(i.e., is increasing, is right-continuous, and satisfies A(x,−y) → 0 and
A(x, y)→ 1 as y →∞);

� for each y ∈ R,
A(X, y) = P(Y ≤ y | X) a.s. (6)

when (X,Y ) ∼ P .

The existence and a.s. uniqueness of a conditional distribution function follows
from standard results about the existence of regular probability distributions
(e.g., [4, Theorem 10.2.2]).
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Consider a sequence ξ1, ξ2, . . . of independent and uniformly distributed
random variables ξi ∼ U . Let Gn be the empirical distribution function of
ξ1, . . . , ξn; we are using the notation of [9], who refer to Gn as the uniform em-
pirical distribution function. For large n and with high probability, Gn is close
to the main diagonal of the unit square [0, 1]2.

Let us use the true conditional distribution function A, satisfying (6), as
base predictive system (roughly, this corresponds to an infinitely long train-
ing sequence proper). The corresponding ideal conformalized predictive system
(ICPS) is defined as

CAz1,...,zn,x,τ (y) :=
1

n+ 1
|{i = 1, . . . , n | A(xi, yi) < A(x, y)}|

+
τ

n+ 1
|{i = 1, . . . , n | A(xi, yi) = A(x, y)}|+ τ

n+ 1
,

where x is the test object. Intuitively, the whole training sequence is used as
the calibration sequence (we do not need a training sequence proper as A is
already perfect). An ICPS is an idealization of both SCPS and cross-conformal
predictive systems.

The following proposition says that CA will be close to A and that the
distance between them will be of order n−1/2. We will state it in a semi-online
protocol and further discuss the intuition behind it after its proof.

Proposition 2. Suppose the conditional distribution function Ax := A(x, ·) (for
the true probability measure P ) is continuous and strictly increasing for almost
all x ∈ X, and Z1, Z2, · · · ∼ P and τ1, τ2, · · · ∼ U are all independent. Then the
ICPS CA satisfies(

CAZ1,...,Zn,Xn+1,τn+1
◦A−1Xn+1

)∞
n=1

d
= (Gn + ηn)

∞
n=1 , (7)

where Xn+1 is the first component of Zn+1,
d
= means the equality of distribu-

tions, and ηn are random functions in the Skorokhod space D[0, 1] satisfying
‖ηn‖∞ ≤ 1/(n+ 1) a.s.

Proof. For given t ∈ [0, 1] and n,

CAZ1,...,Zn,X,τ

(
A−1X (t)

)
=

1

n+ 1
|{i ∈ {1, . . . , n} | AXi

(Yi) < t}|

+
τ

n+ 1
|{i ∈ {1, . . . , n} | AXi(Yi) = t}|+ τ

n+ 1
=

k

n+ 1
+

τ

n+ 1
,

where the second equality holds almost surely and

k := |{i ∈ {1, . . . , n} | AXi
(Yi) ≤ t}| .

It remains to notice that the probability integral transforms AXi
(Yi) ∼ U are

IID and that

sup
τ,k

∣∣∣∣ k

n+ 1
+

τ

n+ 1
− k

n

∣∣∣∣ = sup
τ,k

∣∣∣∣τ − k/nn+ 1

∣∣∣∣ =
1

n+ 1
,
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where τ ranges over [0, 1] and k over {0, . . . , n}.

As mentioned earlier, Proposition 2 can be interpreted as saying that con-
formal calibration is a fully adaptive system. Nothing like it holds for the earlier
methods, such as Least Squares Prediction Machine [14] or its kernelized ver-
sions [12]. Equation (7) implies that

CAZ1,...,Zn,Xn+1,τn+1
≈ AXn+1

. (8)

The difference between the two sides of (8) is of the order n−1/2; this follows
from the standard result n1/2(Gn − I) ⇒ U, where I : [0, 1] → [0, 1] is the
identity function I(t) = t, t ∈ [0, 1], and U is a Brownian bridge (see, e.g.,
[1, Theorem 16.4]) and the invariance of weak convergence under small pertur-
bations such as ηn (e.g., [1, Theorem 4.1]).

6 Experimental results

In this section we explore whether our conformalization procedure improves the
performance of standard predictive systems for artificial and real datasets and
how it compares to earlier methods. Following the standard usage, we will
often say “training set” and “test set” when the order of elements in a training
sequence or test sequence is not important. We begin by considering a standard
predictive system and a toy artificial dataset.

The predictive system that we consider is the Nadaraya–Watson predictive
system (first introduced in the density form in [6])

F (y | x) =

∑n
i=1H

(
y−yi
h

)
G
(
x−xi

g

)
∑n
i=1G

(
x−xi

g

) , (9)

where we will take H to be the sigmoid distribution function

H(u) :=
1

1 + e−u

and G the Gaussian kernel

G(u) :=
1√
2π
e−u

2/2.

There are two positive parameters in (9), g and h.
The labels yi are generated as

yi := 2xi + εi,

where the objects xi are drawn from the uniform distribution on [−1, 1], εi
is Gaussian noise with mean 0 and standard deviation |xi| /2, and xi and εi,
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Figure 1: The toy training set.

i = 1, 2, . . . , are all independent. A training set proper of size 2000 is shown in
Figure 1.

The quality of predictions will be measured by a popular loss function known
as CRPS (continuous ranked probability score). The CRPS loss suffered by a
distribution function F (as prediction) on a real number y (as label) is

CRPS(F, y) :=

∫ ∞
−∞

(
F (u)− 1{u≥y}

)2
du, (10)

where 1 stands for the indicator function. It takes its minimal value 0 when
F = 1[y,∞), and it is ∞ when F has a fat tail. The loss of a sequence of
distribution functions Fi on a test sequence (xi, yi), i = 1, . . . , l, is measured by
the average

1

l

l∑
i=1

CRPS(Fi, yi),

where Fi is the predictive distribution function output for the label of the ith
test observation (found from the training set and the test object) and yi is the
true label of the ith test observation.

Our definition (2) gives a function typically ranging between τ
n−m+1 ≈ 0

and n−m+τ
n−m+1 ≈ 1, and for the purpose of computing CRPS we turn it into a

function ranging between 0 and 1 by applying the appropriate (unique) linear
transformation to its values.

The left panel of Figure 2 shows the loss, averaged over 1000 test obser-
vations, of the Nadaraya–Watson predictive system (9) for various values of
parameters g and h. The right panel shows the loss of the Nadaraya–Watson
predictive system calibrated using a separate calibration sequence of size 1000.
We can see that calibration improves the performance of the base predictive
system for a wide range of parameter values.
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Figure 2: Performance (in the sense of CRPS) of the Nadaraya–Watson predic-
tive system (left) and its split-conformalized version (right) for a range of g and
h.

Next, we extend our analysis using different versions of the same toy dataset
shown in Figure 1 and applying four different base predictive systems: ran-
dom forest regression (RF), Gaussian process with a radial basis function ker-
nel (GRBF), Gaussian process with a Matérn kernel (GM), and TensorFlow
probability module (TF). We apply each of the four predictive systems to the
artificially generated toy dataset across four different scenarios, designed to test
whether our procedure improves the performance of standard predictive sys-
tems:

Normal (Norm): the labels yi are generated as yi := 2xi + εi, where εi is
Gaussian noise with mean 0 and standard deviation 0.5 for the training
and test sets, and the training and test objects are drawn from the uniform
distribution on [−1, 1].

Heteroscedasticity (Het): the labels yi are generated as yi := 2xi+εi, where
εi is Gaussian noise with mean 0 and standard deviation |xi| /2, and the
training and test objects xi are drawn from the uniform distribution on
[−1, 1]; xi and εi, i = 1, 2, . . . , are all independent. See Figure 1.

Heteroscedasticity and covariate shift (HetCov1): the labels yi are gen-
erated as yi := 2xi + εi, where εi is Gaussian noise with mean 0 and
standard deviation 0.5 for the training set and mean 0 and standard de-
viation 2 for the test set, the training objects are drawn from the uniform
distribution on [−1, 0], and the test objects are drawn from the uniform
distribution on [0, 1].

Heteroscedasticity and covariate shift (HetCov2): the labels yi are gen-
erated as yi := 2xi + εi, where εi is Gaussian noise with mean 0 and stan-
dard deviation |xi| /2, the training objects are drawn from the uniform
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distribution on [−1, 0], and the test objects are drawn from the uniform
distribution on [0, 1].

For each of these four scenarios we generate a total of n+ l = 500 observations
with n = 400 for the training set and l = 100 for the test set. For split conformal
prediction we further divide the training set into a training set proper of size m
and a calibration set of size n−m with a ratio of m/n ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.
We train the RF predictive system by using 3-fold cross-validation on the full
training set with a range of hyperparameters and using individual tree pre-
dictions to construct probabilistic predictions by allocating an equal weight to
each individual tree. Alongside the Matérn and radial basis function kernels,
each Gaussian process predictive system also contains constant and white noise
kernels with default parameters with the hyperparameter for lengthscale for
the former two set to the number of input features (which is the recommended
practice). The RF, GRBF, and GM algorithms have been programmed using
the Python scikit-learn library, and TensorFlow probability TF has been
sourced from a recently released TensorFlow 2.0 module [3]. For TF, we
assume a 4-layer sequential network with the first two layers containing the
number of densely connected neurons equal to the number of features and
the third layer containing a densely connected neuron with two outputs to
the probabilistic layer, one for mean and the second for variance. The source
code for the experiments, programmed in Python 3.7, can be found on GitHub
(https://github.com/ip200/conformal-calibrators.git).

In the rest of this section we discuss three groups of prediction algorithms:

� the four base predictive systems, as described in the previous paragraph;

� the SCPS corresponding to the conformity scores (1), where σ̂ := 1 and ŷ
is the mean of the predictive distribution output by one of the four base
predictive systems (for all four base predictive systems ŷ is defined unam-
biguously; e.g., it is the mean prediction of the component decision trees
in the case of the RF predictive system); we will refer to them as nSCPS,
where “n” is a reminder that these RPS produce predictive distribution
whose shape is not (sufficiently) adaptive;

� the SCPS corresponding to the four base predictive systems, as described
in Section 3; we will refer to them as aSCPS (where “a” stands for “adap-
tive”).

The results in Table 1 show the comparison of median CRPS values with
m/n = 0.5 for the three groups of prediction algorithms. It is interesting that,
whereas calibration typically improves the performance of predictive algorithms,
the more adaptive method is not obviously better. In addition, Figure 3 shows
scatter plots of CRPS values across all splits for the nSCPS and aSCPS methods.
In the three cases where heteroscedasticity is present the more adaptive method
tends to work better for difficult observations, i.e., those with higher losses
(represented by points towards the North-East in each of the four plots).
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base nSCPS aSCPS
Norm RF 0.1209 0.1066 0.1193

GM 0.0964 0.0947 0.0932
GRBF 0.1127 0.1160 0.1158
TF 0.1138 0.0942 0.0931

Het RF 0.1323 0.1289 0.1370
GM 0.0940 0.0914 0.0891
GRBF 0.0917 0.0813 0.0818
TF 0.1339 0.1046 0.1035

HetCov1 RF 1.2750 1.1417 1.2074
GM 0.9135 1.0355 0.9055
GRBF 0.9657 1.0179 0.9816
TF 1.1857 0.9425 0.7746

HetCov2 RF 0.8738 0.7325 0.8001
GM 0.2551 0.2561 0.2503
GRBF 0.1288 0.1155 0.1225
TF 0.1084 0.0961 0.1210

Table 1: Median CRPS values for the base predictive systems, nSCPS, and
aSCPS for the artificial datasets with m/n = 0.5. In each row the best result is
set in boldface

For our real-life prediction problem we apply our method to the prediction
of total number of ferry passengers using a dataset from Stena Line. Each year
the company operates a large number of sailing routes, and one of their goals
is to predict the final number of passengers at departure some time ahead of
sailing. The dataset contains transformed and standardised input features for
the route: the number of days ahead of departure, the total number of bookings
and the corresponding passengers booked to date, the month, week, and day of
the week of the departure, whether the departure is occurring during a weekend
or a special event, and the ferry identifier. The dataset covers a total of four
years of sailing for a representative route (namely, Gothenburg, Sweden – Kiel,
Germany) with three years’ worth of data (randomly chosen) as the training set
(n = 94,691) and one year as the test set (l = 31,795). We apply the methods of
nSCPS and aSCPS to each of the four base predictive systems described above
using a range of splits for the training set proper of size m and calibration set of
size n−m with a ratio of m/n ∈ {0.1, 0.25, 0.5, 0.75, 0.9} to a randomly sampled
set of 1000 training and 100 test observations, with the experiment repeated 10
times.

Table 2 shows the comparison of the CRPS values between the nSCPS and
aSCPS methods and the base predictive systems (applied to the full training
set of size n). It is interesting that the less adaptive method of calibration
works better for this particular dataset (this was also our experience for many
benchmark datasets). This is true for a range of fractions m/n used for the
training set proper (the optimal value of m/n will depend on the size of the
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m/n
0.1 0.25 0.5 0.75 0.9

RF 14.285 14.560 16.098 18.397 20.667
GM 12.759 13.274 14.229 16.358 16.373
GRBF 13.776 14.486 20.711 17.091 23.251
TF 41.218 41.591 41.287 41.191 41.285
RF 13.130 12.636 13.817 15.343 17.478
GM 12.165 12.473 13.409 15.588 15.323
GRBF 13.107 13.543 20.440 16.955 22.002
TF 17.561 17.340 17.038 17.657 16.819
RF 15.756 16.267 17.364 19.537 22.005
GM 12.326 12.705 13.844 15.845 15.824
GRBF 13.439 13.620 20.478 16.971 21.870
TF 17.669 17.465 17.358 17.819 17.180

Table 2: CRPS values for the base predictive systems (first four rows), nSCPS
(next four rows), and aSCPS (last four rows) for the Stena Line passenger
dataset. In each column the best result is set in boldface

dataset).
Figure 4 shows the calibration curves for m/n = 0.5. Each calibration curve

plots the percentage of values Fi(yi) that are less than or equal to p (on the
vertical axis) against p ∈ [0, 1] (on the horizontal axis), where Fi is the predictive
distribution output for the label of the ith test observation and yi is the true
label of the ith test observation. The improvement in calibration is particularly
noticeable for TF; this is the base predictive method that can be seen to benefit
from calibration greatly in Table 2.

7 Conclusion

This paper proposes fully adaptive versions of split conformal predictive systems
and discusses their validity and efficiency. The provable property of efficiency
(established in Section 5) is that, if the underlying predictive system is already
ideal, conformalizing it with our new method will not make it worse (or at least
significantly worse). When the underlying predictive system is not ideal, as
in Section 6, our proposed fully flexible method does not always outperform
the older less flexible methods. Asymptotically, as the size of the training set
tends to infinity, fully flexible methods achieve optimal performance [10], but for
moderate sized datasets it appears that restricting flexibility can provide useful
regularization. This is an interesting phenomenon that needs to be understood
and explored further.

There are many other directions of further research, including:

� applying conformal calibration to a wider range of artificial and benchmark
datasets;
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� analyzing the predictive performance of conformal calibration conditional
on the test object x; optimizing conditional performance might require
using Mondrian (namely, object-conditional) conformal predictive systems
and their modifications;

� analyzing the predictive performance of conformal calibration when ap-
plied to benchmark time series and in other non-IID situations.
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Figure 3: CRPS comparison between nSCPS and aSCPS methods applied to
the RF base predictive system across the four different datasets for all splits,
where the horizontal axis represents the nSCPS and the vertical axis the aSCPS
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Figure 4: Calibration curves for the base predictive systems and aSCPS for the
Stena Line passenger dataset
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