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Abstract

This paper proposes an alternative language for expressing results of the algo-
rithmic theory of randomness. The language is more precise in that it does not
involve unspecified additive or multiplicative constants, making mathematical
results, in principle, applicable in practice. Our main testing ground for the
proposed language is the problem of defining Bernoulli sequences, which was of
great interest to Andrei Kolmogorov and his students.
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1 Introduction

There has been a great deal of criticism of the notion of p-value lately, and in
particular, Glenn Shafer [20] defended the use of betting scores instead. This
paper refers to betting scores as e-values and demonstrates their advantages
by establishing results that become much more precise when they are stated in
terms of e-values instead of p-values.

Both p-values and e-values have been used, albeit somewhat implicitly, in the
algorithmic theory of randomness: Martin-Löf’s tests of algorithmic randomness
[16] are an algorithmic version of p-variables (i.e., functions producing p-values),
while Levin’s tests of algorithmic randomness [13, 2] are an algorithmic version
of e-variables (this is the term we will use in this paper for functions producing
e-values). Levin’s tests are a natural modification of Martin-Löf’s tests leading
to simpler mathematical results; similarly, many mathematical results stated in
terms of p-values become simpler when stated in terms of e-values.

The algorithmic theory of randomness is a powerful source of intuition, but
strictly speaking, its results are not applicable in practice since they always
involve unspecified additive or multiplicative constants. The goal of this paper
is to explore ways of obtaining results that are more precise; in particular, results
that may be applicable in practice. The price to pay is that our results may
involve more quantifiers (usually hidden in our notation) and, therefore, their
statements may at first appear less intuitive.

In Section 2 we define p-variables and e-variables in the context of testing
simple statistical hypotheses, explore relations between them, and explain the
intuition behind them. In Section 3 we generalize these definitions, results, and
explanations to testing composite statistical hypotheses.

Section 4 is devoted to testing in Bayesian statistics and gives non-
algorithmic results that are particularly clean and intuitive. They will be
used as technical tools later in the paper. In Section 5 these results are slightly
extended and then applied to clarifying the difference between statistical ran-
domness and exchangeability. (In this paper we use “statistical randomness”
to refer to being produced by an IID probability measure; there will always be
either “algorithmic” or “statistical” standing next to “randomness” in order to
distinguish between the two meanings.)

Section 7 explores the question of defining Bernoulli sequences, which was
of great interest to Kolmogorov [8], Martin-Löf [16], and Kolmogorov’s other
students. Kolmogorov defined Bernoulli sequences as exchangeable sequences,
but we will see that another natural definition is narrower than exchangeability.
A precise relation between the two definitions is deduced from a general result
in Section 6, which can be regarded as another finitary analogue of de Finetti’s
theorem.

Kolmogorov paid particular attention to algorithmic randomness with re-
spect to uniform probability measures on finite sets. On one hand, he believed
that his notion of algorithmic randomness in this context “can be regarded as
definitive” [10], and on the other hand, he never seriously suggested any gen-
eralizations of this notion (and never endorsed generalizations proposed by his
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students). In Section 7 we state a simple result in this direction that character-
izes the difference between Bernoulliness and exchangeability.

In Sections 4 and 7 we state our results first in terms of e-variables and
then p-variables. Results in terms of e-variables are always simpler and cleaner,
supporting Glenn Shafer’s recommendation in [20] to use betting scores more
widely.

Remark 1. There is no standard terminology for what we call e-values and
e-variables. In addition to Shafer’s use of “betting scores” for our e-values:

� Shafer et al. [22] use “Bayes factor” to mean the reciprocals of e-values,
the motivation being that Bayes factors and e-values are the same thing
for simple statistical hypotheses.

� Gammerman and Vovk [3] refer to the reciprocals of e-values as “i-values”
(“i” for “integral”). This term and its variations were used widely in dis-
cussions in the Department of Computer Science at Royal Holloway, Uni-
versity of London, around 2000: cf., e.g., “i-test” [18] and “i-randomness”
[29]. They are natural in view of the common term “integral tests” for
Levin-type tests (used, e.g., in [15] starting from the first edition in 1993).

� In the first version of the arXiv report [5], Grünwald et al. referred to
e-values as “s-values” (“s” for “safe”, capitalizing both “s-values and “p-
values”), but in the second version they use “e-values”. The expression
“s-values” has also been used [4] in a completely different sense, as the
minus binary log of p-values.

Our “e-value” is motivated by expectation playing a role similar to that of
probability in “p-value” [21, Section 3.8].

No formal knowledge of the algorithmic theory of randomness will be as-
sumed in this paper; the reader can safely ignore all comparisons between our
results and results of the algorithmic theory of randomness.

Notation

Our notation will be mostly standard or defined at the point where it is first used.
If F is a class of [0,∞]-valued functions on some set Ω and g : [0,∞]→ [0,∞] is a
function, we let g(F) stand for the set of all compositions g(f) = g◦f , f ∈ F (i.e,
g is applied to F element-wise). We will also use obvious modifications of this
definition: e.g., 0.5F−0.5 would be interpreted as g(F), where g(u) := 0.5u−0.5

for u ∈ [0,∞].

2 Testing simple statistical hypotheses

Let P be a probability measure on a measurable space Ω. A p-variable [6] is
a measurable function f : Ω → [0,∞] such that, for any ε > 0, P{f ≤ ε} ≤ ε.
(Since P is a probability measure, we can assume, without loss of generality, that
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f takes values in [0, 1].) An e-variable is a measurable function f : Ω → [0,∞]
such that

∫
f dP ≤ 1. (As already mentioned, e-variables have been promoted

in [20] and [5], and also in [23, Section 11.5], using different terminology.)
Let PP be the class of all p-variables and EP be the class of all e-variables,

where the underlying measure P is shown as subscript. We can define p-values
and e-values as values taken by p-variables and e-variables, respectively. The
intuition behind p-values and e-values will be discussed later in this section.

The following is an algorithm-free version of the standard relation (see, e.g.,
[15, Lemma 4.3.5] or [24, Theorem 43]) between Martin-Löf’s and Levin’s algo-
rithmic notions of randomness deficiency.

Proposition 2. For any probability measure P and κ ∈ (0, 1),

κPκ−1
P ⊆ EP ⊆ P−1

P . (1)

Proof. The right inclusion in (1) follows from the Markov inequality: if f is an
e-variable,

P{f−1 ≤ ε} = P{f ≥ 1/ε} ≤ ε. (2)

The left inclusion in (1) follows from [23, Section 11.5]. The value of
the constant in front of the Pκ−1

P on the left-hand side of (1) follows from∫ 1

0
pκ−1 dp = 1/κ.

Both p-variables and e-variables can be used for testing statistical hypothe-
ses. In this section we only discuss simple statistical hypotheses, i.e., probability
measures. Observing a large e-value or a small p-value with respect to a simple
statistical hypothesis P entitles us to rejecting P as the source of the observed
data, provided the e-variable or p-variable were chosen in advance. The e-value
can be interpreted as the amount of evidence against P found by our chosen
e-variable. Similarly, the p-value reflects the amount of evidence against P on
a different scale; small p-values reflect a large amount of evidence against P .

Remark 3. Proposition 2 tells us that using p-values and using e-values are
equivalent, on a rather crude scale. Roughly, a p-value of p corresponds to an
e-value of 1/p. The right inclusion in (2) says that any way of producing e-
values e can be translated into a way of producing p-values 1/e. On the other
hand, the left inclusion in (2) says that any way of producing p-values p can
be translated into a way of producing e-values κpκ−1 ≈ 1/p, where the “≈”
assumes that we are interested in the asymptotics as p→ 0, κ > 0 is small, and
we ignore positive constant factors (as customary in the algorithmic theory of
randomness).

Remark 4. Proposition 2 can be greatly strengthened, under the assumptions
of Remark 3. For example, we can replace (1) by

Hκ(PP ) ⊆ EP ⊆ P−1
P ,

where

Hκ(v) :=


∞ if v = 0

κ(1 + κ)κv−1(− ln v)−1−κ if v ∈ (0, e−1−κ]

0 if v ∈ (e−1−κ, 1]

(3)
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and κ ∈ (0,∞) (see [23, Section 11.1]). The value of the coefficient κ(1 + κ)κ in
(3) follows from ∫ e−1−κ

0

v−1(− ln v)−1−κ dv =
1

κ(1 + κ)κ
.

We can rewrite (1) in Proposition 2 as

κ−1P1−κ
P ⊆ E−1

P ⊆ PP , (4)

as

E−1
P ⊆ PP ⊆ κ

1
1−κ E

1
κ−1

P , (5)

and as

EP ⊆ P−1
P ⊆ κ

1
κ−1 E

1
1−κ
P . (6)

3 Testing composite statistical hypotheses

Let Ω be a measurable space, which we will refer to as our sample space, and Θ be
another measurable space (our parameter space). We say that P = (Pθ | θ ∈ Θ)
is a statistical model on Ω if P is a Markov kernel with source Θ and target
Ω: each Pθ is a probability measure on Ω, and for each measurable A ⊆ Ω, the
function Pθ(A) of θ ∈ Θ is measurable.

The notions of an e-variable and a p-variable each split in two. We are usually
really interested only in the outcome ω, while the parameter θ is an auxiliary
modelling tool. This motivates the following pair of simpler definitions. A
measurable function f : Ω→ [0,∞] is an e-variable with respect to the statistical
model P (which is our composite statistical hypothesis in this context) if

∀θ ∈ Θ :

∫
Ω

f(ω)Pθ(dω) ≤ 1.

In other words, if P ∗(f) ≤ 1, where P ∗ is the upper envelope

P ∗(f) := sup
θ∈Θ

∫
f(ω)Pθ(dω) (7)

(in Bourbaki’s [1, IX.1.1] terminology, P ∗ is an encumbrance provided the inte-
gral in (7) is understood as the upper integral). Similarly, a measurable function
f : Ω → [0, 1] is a p-variable with respect to the statistical model P if, for any
ε > 0,

∀θ ∈ Θ : Pθ{ω ∈ Ω | f(ω) ≤ ε} ≤ ε.

In other words, if, for any ε > 0, P ∗(1{f≤ε}) ≤ ε.
Let EP be the class of all e-variables with respect to the statistical model P ,

and PP be the class of all p-variables with respect to P . We can easily generalize
Proposition 2 (the proof stays the same).
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Proposition 5. For any statistical model P and κ ∈ (0, 1),

κPκ−1
P ⊆ EP ⊆ P−1

P .

For f ∈ EP , we regard the e-value f(ω) as the amount of evidence against
the statistical model P found by f (which must be chosen in advance) when the
outcome is ω. The interpretation of p-values is similar.

In some case we would like to take the parameter θ into account more se-
riously. A measurable function f : Ω × Θ → [0,∞] is a conditional e-variable
with respect to the statistical model P if

∀θ ∈ Θ :

∫
Ω

f(ω; θ)Pθ(dω) ≤ 1.

Let ĒP be the class of all such functions. And a measurable function f : Ω×Θ→
[0, 1] is a conditional p-variable with respect to P if

∀ε > 0 ∀θ ∈ Θ : Pθ {ω ∈ Ω | f(ω; θ) ≤ ε} ≤ ε.

Let P̄P be the class of all such functions.
We can embed EP (resp. PP ) into ĒP (resp. P̄P ) by identifying a function f

on domain Ω with the function f ′ on domain Ω × Θ that does not depend on
θ ∈ Θ, f ′(ω; θ) := f(ω).

For f ∈ ĒP , we can regard f(ω; θ) as the amount of evidence against the
specific probability measure Pθ in the statistical model P found by f when the
outcome is ω.

We can generalize Proposition 5 further as follows.

Proposition 6. For any statistical model P and κ ∈ (0, 1),

κP̄κ−1
P ⊆ ĒP ⊆ P̄−1

P . (8)

Remarks 3 and 4 are also applicable in the context of Propositions 5 and 6.

4 The validity of Bayesian statistics

In this section we establish the validity of Bayesian statistics in our framework,
mainly as a sanity check. We will translate the results in [32], which are stated
in terms of the algorithmic theory of randomness, to our algorithm-free setting.
It is interesting that the proofs simplify radically, and become almost obvious.
(And remarkably, one statement also simplifies.)

Let P = (Pθ | θ ∈ Θ) be a statistical model, as in the previous section, and
Q be a probability measure on the parameter space Θ. Together, P and Q form
a Bayesian model, and Q is known as the prior measure in this context.

The joint probability measure T on the measurable space Ω × Θ is defined
by

T (A×B) :=

∫
B

Pθ(A)Q(dθ),

5



for all measurable A ⊆ Ω and B ⊆ Θ. Let Y be the marginal distribution of T
on Ω: for any measurable A ⊆ Ω, Y (A) := T (A×Θ).

The product ĒPEQ of ĒP and EQ is defined as the class of all measurable
functions f : Ω×Θ→ [0,∞] such that, for some g ∈ ĒP and h ∈ EQ,

f(ω, θ) = g(ω; θ)h(θ) T -a.s. (9)

Such f can be regarded as ways of finding evidence against (ω, θ) being produced
by the Bayesian model (P,Q): to have evidence against (ω, θ) being produced by
(P,Q) we need to have evidence against θ being produced by the prior measure
Q or evidence against ω being produced by Pθ; we combine the last two amounts
of evidence by multiplying them. The following proposition tells us that this
product is precisely the amount of evidence against T found by a suitable e-
variable.

Proposition 7. If (Pθ | θ ∈ Θ) is a statistical model with a prior probability
measure Q on Θ, and T is the joint probability measure on Ω×Θ, then

ET = ĒPEQ. (10)

Proposition 7 will be deduced from Theorem 14 in Section 5. It is the
analogue of Theorem 1 in [32], which says, in the terminology of that paper,
that the level of impossibility of a pair (θ, ω) with respect to the joint probability
measure T is the product of the level of impossibility of θ with respect to the
prior measureQ and the level of impossibility of ω with respect to the probability
measure Pθ. In an important respect, however, Proposition 7 is simpler than
Theorem 1 in [32]: in the latter, the level of impossibility of ω with respect to
Pθ has to be conditional on the level of impossibility of θ with respect to Q,
whereas in the former there is no such conditioning. Besides, Proposition 7 is
more precise: it does not involve any constant factors (specified or otherwise).

Remark 8. The non-algorithmic formula (10) being simpler than its counterpart
in the algorithmic theory of randomness is analogous to the non-algorithmic
formula H(x, y) = H(x)+H(y | x) being simpler than its counterpart K(x, y) =
K(x)+K(y | x,K(x)) in the algorithmic theory of complexity, H being entropy
and K being prefix complexity. The fact that K(x, y) does not coincide with
K(x)+K(y | x) to within an additive constant, K being Kolmogorov complexity,
was surprising to Kolmogorov and wasn’t noticed for several years [7, 8].

The inf-projection onto Ω of an e-variable f ∈ ET with respect to T is the
function (projinf

Ω f) : Ω→ [0,∞] defined by(
projinf

Ω f
)

(ω) := inf
θ∈Θ

f(ω, θ).

Intuitively, projinf
Ω f regards ω as typical under the model if it can be extended

to a typical (ω, θ) for at least one θ. Let projinf
Ω ET be the set of all such inf-

projections.
The results in the rest of this section become simpler if the definitions of

classes E and P are modified slightly: we drop the condition of measurability
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on their elements and replace all integrals by upper integrals and all measures
by outer measures. We will use the modified definitions only in the rest of this
section (we could have used them in the whole of this paper, but they become
particularly useful here since projections of measurable functions do not have
to be measurable [25]).

Proposition 9. If T is a probability measure on Ω × Θ and Y is its marginal
distribution on Ω,

EY = projinf
Ω ET . (11)

Proof. To check the inclusion “⊆” in (11), let g ∈ EY , i.e.,
∫
g(ω)Y (dω) ≤ 1.

Setting f(ω, θ) := g(ω), we have
∫
f(ω, θ)T (dω,dθ) ≤ 1 (i.e., f ∈ ET ) and g is

the inf-projection of f onto Ω.
To check the inclusion “⊇” in (11), let f ∈ ET and g := projinf

Ω f . We then
have ∫

g(ω)Y (dω) =

∫
g(ω)T (dω,dθ) ≤

∫
f(ω, θ)T (dω,dθ) ≤ 1.

Proposition 9 says that we can acquire evidence against an outcome ω being
produced by the Bayesian model (P,Q) if and only if we can acquire evidence
against (ω, θ) being produced by the model for all θ ∈ Θ.

We can combine Propositions 7 and 9 obtaining

EY = projinf
Ω

(
ĒPEQ

)
.

The rough interpretation is that we can acquire evidence against ω being pro-
duced by Y if and only if we can, for each θ ∈ Θ, acquire evidence against θ
being produced by Q or acquire evidence against ω being produced by Pθ.

The following statements in terms of p-values are cruder, but their interpre-
tation is similar.

Corollary 10. If κ ∈ (0, 1) and (P,Q) is a Bayesian model,

κ−1P1−κ
T ⊆ P̄PPQ ⊆ κ

2
1−κP

1
1−κ
T .

Proof. We will use the restatements (4) and (5) of Proposition 2 and similar
restatements of Propositions 6 and 5. Therefore, by (10) in Proposition 7,

κ−1P1−κ
T ⊆ E−1

T = (ĒPEQ)−1 = Ē−1
P E

−1
Q ⊆ P̄PPQ

and

P̄PPQ ⊆ κ
2

1−κ
(
ĒPEQ

) 1
κ−1 = κ

2
1−κ E

1
κ−1

T ⊆ κ
2

1−κP
1

1−κ
T .

Corollary 11. If κ ∈ (0, 1), T is a probability measure on Ω×Θ, and Y is its
marginal distribution on Ω,

κ−1 projsup
Ω P1−κ

T ⊆ PY ⊆ κ
1

1−κ projsup
Ω P

1
1−κ
T ,

where projsup
Ω is defined similarly to projinf

Ω (with sup in place of inf).
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Proof. As in the proof of Corollary 10, we have

κ−1 projsup
Ω P1−κ

T ⊆ projsup
Ω E−1

T = E−1
Y ⊆ PY

and

PY ⊆ κ
1

1−κ E
1

κ−1

Y = κ
1

1−κ projsup
Ω E

1
κ−1

T ⊆ κ
1

1−κ projsup
Ω P

1
1−κ
T .

5 Parametric Bayesian models

Now we generalize the notion of a Bayesian model to that of a parametric
Bayesian (or para-Bayesian) model. This is a pair consisting of a statistical
model (Pθ | θ ∈ Θ) on a sample space Ω and a statistical model (Qπ | π ∈ Π) on
the sample space Θ (so that the sample space of the second statistical model is
the parameter space of the first statistical model). Intuitively, a para-Bayesian
model is the counterpart of a Bayesian model in the situation of uncertainty
about the prior: now the prior is a parametric family of probability measures
rather than one probability measure.

The following definitions are straightforward generalizations of the defini-
tions for the Bayesian case. The joint statistical model T = (Tπ | π ∈ Π) on the
measurable space Ω×Θ is defined by

Tπ(A×B) :=

∫
B

Pθ(A)Qπ(dθ), (12)

for all measurable A ⊆ Ω and B ⊆ Θ. For each π ∈ Π, Yπ is the marginal
distribution of Tπ on Ω: for any measurable A ⊆ Ω, Yπ(A) := Tπ(A × Θ).
The product ĒPEQ of ĒP and EQ is still defined as the class of all measurable
functions f : Ω × Θ → [0,∞] such that, for some g ∈ ĒP and h ∈ EQ, we have
the equality in (9) Tπ-a.s., for all π ∈ Π.

Remark 12. Another representation of para-Bayesian models is as a sufficient
statistic, as elaborated in [12]:

� For the para-Bayesian model (P,Q), the statistic (θ, ω) ∈ (Θ × Ω) 7→ θ
is a sufficient statistic in the statistical model (Tπ) on the product space
Θ× Ω.

� If θ is a sufficient statistic for a statistical model (Tπ) on a sample space
Ω, then (P,Q) is a para-Bayesian model, where Q is the distribution of θ,
and Pθ are (fixed versions of) the conditional distributions given θ.

Remark 13. Yet another way to represent a para-Bayesian model (P,Q) is a
Markov family with time horizon 3:

� the initial state space is Π, the middle one is Θ, and the final one is Ω;

� there is no initial probability measure on Π, the statistical model (Qπ)
is the first Markov kernel, and the statistical model (Pθ) is the second
Markov kernel.
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Theorem 14. If (P,Q) is a para-Bayesian model with the joint statistical model
T (as defined by (12)), we have (10).

Proof. The inclusion “⊇” in (10) follows from the definition of T : if g ∈ ĒP and
h ∈ EQ, we have, for all π ∈ Π,∫

Ω×Θ

g(ω; θ)h(θ)Tπ(dω,dθ) =

∫
Θ

∫
Ω

g(ω; θ)Pθ(dω)h(θ)Qπ(dθ)

≤
∫

Θ

h(θ)Qπ(dθ) ≤ 1.

To check the inclusion “⊆” in (10), let f ∈ ET . Define h : Θ → [0,∞] and
g : Ω×Θ→ [0,∞] by

h(θ) :=

∫
f(ω, θ)Pθ(dω)

g(ω; θ) := f(ω, θ)/h(θ)

(setting, e.g., 0/0 := 0 in the last fraction). Since by definition, f(ω, θ) =
g(ω; θ)h(θ) Tπ-a.s., it suffices to check that h ∈ EQ and g ∈ ĒP . The inclusion
h ∈ EQ follows from the fact that, for any π ∈ Π,∫

Θ

h(θ)Qπ(dθ) =

∫
Θ

∫
Ω

f(ω, θ)Pθ(dω)Qπ(dθ) =

∫
Ω×Θ

f(ω, θ)Tπ(dω,dθ) ≤ 1.

And the inclusion g ∈ ĒP follows from the fact that, for any θ ∈ Θ,∫
g(ω; θ)Pθ(dω) =

∫
f(ω, θ)

h(θ)
Pθ(dω) =

∫
f(ω, θ)Pθ(dω)

h(θ)
=
h(θ)

h(θ)
≤ 1

(we have ≤ 1 rather than = 1 because of the possibility h(θ) = 0).

6 IID vs exchangeability: general case

De Finetti’s theorem (see, e.g., [19, Theorem 1.49]) establishes a close connection
between IID and exchangeability for infinite sequences in Z∞, where Z is a
Borel measurable space: namely, the exchangeable probability measures are
the convex mixtures of the IID probability measures (in particular, their upper
envelopes, and therefore, e- and p-variables, coincide). This section discusses a
somewhat less close connection in the case of sequences of a fixed finite length.

FixN ∈ {1, 2, . . . } (time horizon), and let Ω := ZN be the set of all sequences
of elements of Z (a measurable space, not necessarily Borel) of length N . An IID
probability measure on Ω is a measure of the type QN , where Q is a probability
measure on Z. The configuration conf(ω) of a sequence ω ∈ Ω is the multiset
of all elements of ω, and a configuration measure is the pushforward of an IID
probability measure on Ω under the mapping conf. Therefore, a configuration
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measure is a measure on the set of all multisets in Z of size N (with the natural
quotient σ-algebra).

Let Eiid be the class of all e-variables with respect to the family of all IID
probability measures on Ω and Econf be the class of all e-variables with respect to
the family of all configuration probability measures. Let Eexch be the class of all
e-variables with respect to the family of all exchangeable probability measures
on Ω; remember that a probability measure P on Ω is exchangeable if, for any
permutation π : {1, . . . , N} → {1, . . . , N} and any measurable set E ⊆ ZN ,

P
{

(z1, . . . , zN ) | (zπ(1), . . . , zπ(N)) ∈ E
}

= P (E).

The product EexchEconf of Eexch and Econf is the set of all measurable functions
f : Ω→ [0,∞] such that, for some g ∈ Eexch and h ∈ Econf ,

f(ω) = g(ω)h(conf(ω))

holds for almost all ω ∈ Ω (under any IID probability measure).

Corollary 15. It is true that

Eiid = EexchEconf . (13)

Proof. It suffices to apply Theorem 14 in the situation where Θ is the set of
all configurations, Pθ is the probability measure on ZN concentrated on the
set of all sequences with the configuration θ and uniform on that set (we can
order θ arbitrarily, and then Pθ assigns weight 1/N ! to each permutation of
that ordering), Π is the set of all IID probability measures on Ω, and Qπ is the
pushforward of π ∈ Π with respect to the mapping conf.

Corollary 15 is the non-algorithmic analogue of Theorem 3 of [30], given
without a proof.

The next theorem gives the ranges of Eiid, Eexch, and Econf . For any set of
functions F we set

supF := sup
f∈F

sup f ;

i.e., supF is the supremum of the values attained by the functions in F . Re-
member that the length N of the sequences considered in this section is fixed.

Theorem 16. Suppose |Z| ≥ N . Then

sup Eiid = NN , (14)

sup Eexch = N ! ∼ (2πN)1/2(N/e)N , (15)

sup Econf = NN/N ! ∼ (2πN)−1/2eN , (16)

where the two “∼” refer to the asymptotics as N →∞.
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Theorem 16 shows that (13) remain true when we put sup in from of each
of the three function classes. The counterpart of (16) in the algorithmic theory
of randomness is Theorem 4 in [30].

A crude interpretation of Corollary 15 and Theorem 16 is that the condition
of being an IID sequence can be split into two components: exchangeability and
having an iid configuration; the first component is more important.

Proof of Theorem 16. For any ω ∈ Ω, supf∈Eiid f(ω) is attained at f that takes
a non-zero value only at ω. Therefore,

sup Eiid = sup
ω∈Ω

1

supP P ({ω})
,

P ranging over the IID probability measures. The supremum will not change if
P ranges over the probability measures on Z concentrated on the elements of
the sequence ω, which we will assume. Consider an ω consisting of n distinct
elements of Z. Order these distinct elements, and let mi, i = 1, . . . , n, be the
number of times the ith of these elements occurs in ω. Using the maximum
likelihood estimate for the multinomial model, we can see that

1

supP P ({ω})
= (N/m1)m1 . . . (N/mn)mn =

NN

mm1
1 . . .mmn

n
.

The supremum of the last expression is attained when n = N and m1 = · · · =
mn = 1, and it is equal to NN . This completes the proof of (14).

A similar argument also works for (16). We have

sup Econf = sup
m1,...,mn

(N/m1)m1 . . . (N/mn)mn(
N

m1,...,mn

) =
NN/N !

(mm1
1 /m1!) . . . (mmn

n /mn!)
.

(17)
Since (mm)/m! ≥ 1 for all m ∈ {1, 2, . . . } and (mm)/m! > 1 for all m ∈
{2, 3, . . . }, the second supremum in (17) is also attained when n = N and
m1 = · · · = mn = 1, which completes the proof of (16).

As for (15), it suffices to notice that

sup
m1,...,mn

(
N

m1, . . . ,mn

)
= sup
m1,...,mn

N !

m1! . . .mn!

is attained at n = N and m1 = · · · = mn = 1.
The asymptotic equivalences in (15) and (16) follow from Stirling’s formula.

Since the suprema in Theorem 16 are attained at functions that are zero
everywhere except one point, we have the following corollary.

Corollary 17. If |Z| ≥ N ,

inf Piid = N−N ,

inf Pexch = 1/N ! ∼ (2πN)−1/2(e/N)N ,

inf Pconf = N !/NN ∼ (2πN)1/2e−N .
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7 IID vs exchangeability: Bernoulli sequences

In this section we apply the definitions and results of the previous sections to
the problem of defining Bernoulli sequences. Kolmogorov’s main publications
on this topic are [8] and [9]. The results of this section will be algorithm-free
versions of the results in [26] (also described in V’yugin’s review [33], Sections
11–13).

The definitions of the previous section simplify as follows. Now Ω := {0, 1}N
is the set of all binary sequences of length N . Let EBern be the class of all e-
variables with respect to the family of all Bernoulli IID probability measures
on Ω (this is a special case of Eiid) and Ebin be the class of all e-variables with
respect to the family of all binomial probability measures on {0, . . . , N} (this is
a special case of Econf); remember that the Bernoulli measure Bp with parameter
p ∈ [0, 1] is defined by Bp({ω}) := pk(1− p)N−k, where k := +ω is the number
of 1s in ω, and the binomial measure binp with parameter p ∈ [0, 1] is defined

by binp({k}) :=
(
N
k

)
pk(1− p)N−k. (The notation +ω for the number k of 1s in

ω is motivated by k being the sum of the elements of ω.)
We continue to use the notation Eexch for the class of all e-variables with

respect to the family of all exchangeable probability measures on Ω; a probability
measure P on Ω is exchangeable if and only if P ({ω}) depends on ω only via
+ω. It is clear that a function f : Ω→ [0,∞] is in Eexch if and only if, for each
k ∈ {0, . . . , N}, (

N

k

)−1 ∑
ω∈Ω:+ω=k

f(ω) ≤ 1.

The product EexchEbin of Eexch and Ebin is the set of all functions ω ∈ Ω 7→
g(ω)h(+ω) for g ∈ Eexch and h ∈ Ebin. The following is a special case of
Corollary 15.

Corollary 18. It is true that

EBern = EexchEbin.

The intuition behind Corollary 18 is that a sequence ω ∈ Ω is Bernoulli
if and only if it is exchangeable and the number of 1s in it is binomial. The
analogue of Corollary 18 in the algorithmic theory of randomness is Theorem 1
in [26], which says, using the terminology of that paper, that the Bernoulliness
deficiency of ω equals the binomiality deficiency of +ω plus the conditional
randomness deficiency of ω in the set of all sequences in {0, 1}N with +ω 1s
given the binomiality deficiency of +ω. Corollary 18 is simpler since it does not
involve any analogue of the condition “given the binomiality deficiency of +ω”.

Remark 19. Kolmogorov’s definition of Bernoulli sequences is via exchangeabil-
ity. We can regard this definition as an approximation to definitions taking into
account the binomiality of the number of 1s. In the paper [8] Kolmogorov uses
the word “approximately” when introducing his notion of Bernoulliness (p. 663,
lines 5–6 after the 4th displayed equation). However, it would be wrong to as-
sume that here he acknowledges disregarding the requirement that the number

12



of 1s should be binomial; this is not what he meant when he used the word
“approximately” [11].

The reason for Kolmogorov’s definition of Bernoulliness being different from
the definitions based on e-values and p-values is that +ω carries too much
information about ω; intuitively [27], +ω contains not only useful information
about the probability p of 1 but also noise. To reduce the amount of noise, we
will use an imperfect estimator of p. Set

p(a) := sin2
(
aN−1/2

)
, a = 1, . . . , N∗ − 1, N∗ :=

⌊π
2
N1/2

⌋
, (18)

where b·c stands for integer part. Let E : {0, . . . , N} → [0, 1] be the estimator
of p defined by E(k) := p(a), where p(a) is the element of the set (18) that
is nearest to k/N among those satisfying p(a) ≤ k/N ; if such elements do not
exist, set E(k) := p(1).

Denote by A the partition of the set {0, . . . , N} into the subsets E−1(E(k)),
where k ∈ {0, . . . , N}. For any k ∈ {0, . . . , N}, A(k) := E−1(E(k)) denotes
the element of the partition A containing k. Let Esin be the class of all e-
variables with respect to the statistical model {Uk | k ∈ {0, . . . , N}}, Uk being
the uniform probability measure on A(k). (This is a Kolmogorov-type statistical
model, consisting of uniform probability measures on finite sets; see, e.g., [31,
Section 4].)

Theorem 20. For some universal constant c > 0,

c−1Esin ⊆ Ebin ⊆ cEsin.

The analogue of Theorem 20 in the algorithmic theory of randomness is
Theorem 2 in [26], and the proof of Theorem 20 can be extracted from that of
Theorem 2 in [26] (details omitted).

Remark 21. Paper [26] uses a net slightly different from (18); (18) was intro-
duced in [27] and also used in [33].

To state corollaries in terms of p-values of Corollary 18 and Theorem 20, we
will use the obvious notation PBern, Pexch, and Pbin.

Corollary 22. For each κ ∈ (0, 1),

κ−1P1−κ
Bern ⊆ PexchPbin ⊆ κ

2
1−κP

1
1−κ
Bern. (19)

Proof. Similarly to Corollary 10, the left inclusion of (19) follows from

κ−1P1−κ
Bern ⊆ E

−1
Bern = E−1

exchE
−1
bin ⊆ PexchPbin,

and the right inclusion of (19) follows from

PexchPbin ⊆ κ
2

1−κ (EexchEbin)
1

κ−1 = κ
2

1−κ E
1

κ−1

Bern ⊆ κ
2

1−κP
1

1−κ
Bern.
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Corollary 23. There is a universal constant c > 0 such that, for each κ ∈
(0, 0.9),

cκ−1P1−κ
sin ⊆ Pbin ⊆ c−1κ

1
1−κP

1
1−κ
sin . (20)

Proof. As in the previous proof, the left inclusion of (20) follows from

κ−1P1−κ
sin ⊆ E−1

sin ⊆ c
−1E−1

bin ⊆ c
−1Pbin,

and the right inclusion from

Pbin ⊆ κ
1

1−κ E
1

κ−1

bin ⊆ c
−1κ

1
1−κ E

1
κ−1

sin ⊆ c−1κ
1

1−κP
1

1−κ
sin ,

where c stands for a positive universal constant.

In conclusion of this section, let us state the binary version of Theorem 16
and its corollary.

Theorem 24. Suppose N ∈ {2, 4, . . . } is an even number. Then

sup EBern = 2N , (21)

sup Eexch =

(
N

N/2

)
∼ (πN/2)−1/22N , (22)

sup Ebin = 2N/

(
N

N/2

)
∼ (πN/2)1/2, (23)

where the two “∼” again refer to the asymptotics as N →∞.

Proof. The argument is similar to that in the proof of Theorem 16. The supre-
mum in (21) is attained at the function that takes value 2N at the sequence
0 . . . 01 . . . 1 (N/2 0s followed by N/2 1s) and is zero everywhere else. Replacing
2N by

(
N
N/2

)
, we obtain a function attaining the supremum in (22). The supre-

mum in (23) is attained at the function on {0, . . . , N} that takes value 2N/
(
N
N/2

)
at N/2 and is zero everywhere else. Finally, the asymptotic equivalences follow
from Stirling’s formula.

We can see that sup Ebin (given by (23)) is much smaller than sup EBern and
sup Eexch (given by (21) and (22), respectively). This might be interpreted as
exchangeability being the main component of Bernoulliness.

Corollary 25. If N is an even number,

inf PBern = 2−N ,

inf Pexch = 1/

(
N

N/2

)
∼ (πN/2)1/22−N ,

inf Pbin =

(
N

N/2

)
2−N ∼ (πN/2)−1/2.
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8 Conclusion

In this section we discuss some directions of further research. A major advantage
of the non-algorithmic approach to randomness proposed in this paper is the
absence of unspecified constants; in principle, all constants can be computed.
The most obvious open problem is to find the best constant c in Theorem 20.

In Section 7 we discussed a possible implementation of Kolmogorov’s idea of
defining Bernoulli sequences. However, Kolmogorov’s idea was part of a wider
programme; e.g., in [9, Section 5] he sketches a way of applying a similar ap-
proach to Markov sequences. For other possible applications, see [31, Section 4]
(most of these applications were mentioned by Kolmogorov in his papers and
talks). Analogues of Corollary 18 in Section 7 can be established for these other
applications (cf. [12] and Remark 12), but it is not obvious whether Theorem 20
can be extended in a similar way.
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Appendix: Non-algorithmic theory of complexity

The definitions of p-variables and e-variables given at the beginning of Section 2
can be applied, without changing a word, to any measure P on Ω, without the
restriction P (Ω) = 1. It is interesting that, for some P , such generalizations also
have useful applications. In particular, the following generalization of Propo-
sition 2 includes an algorithm-free version of standard relations (see, e.g., [14,
Theorem 4]) between plain and prefix Kolmogorov complexities.

Proposition 26. Let h : [0,∞]→ [0,∞] be a continuous function that is strictly
decreasing over {h > 0} and satisfies

∫
h ≤ 1, where

∫
stands for the integration

with respect to the Lebesgue measure. For any measure P ,

h(PP ) ⊆ EP ⊆ P−1
P . (24)

Proof. The right inclusion in (24) still follows from the Markov inequality (2).
As for the left inclusion, we have, for any f ∈ PP and any h satisfying the
conditions of the proposition,∫

h(f) dP =

∫ ∞
0

P (h(f) ≥ c) dc =

∫ ∞
0

P (f ≤ h−1(c)) dc

≤
∫ ∞

0

h−1(c) dc =

∫
h−1 =

∫
h ≤ 1,

where the last equality follows from Fubini’s theorem.
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An example of a function h satisfying Proposition 26 is

h(c) :=

{
κ
2 c
κ−1 if c ≤ 1

κ
2 c
−κ−1 if c ≥ 1,

(25)

where κ ∈ (0, 1) is a constant.
Let P be the counting measure on N. An example of f ∈ PP is f := 2C+1,

where C is plain Kolmogorov complexity; this function f is the smallest, to
within a constant factor, upper semicomputable element of PP (see [24, Theorem
8]). An example of m ∈ EP is the largest, to within a constant factor, lower
semicomputable measure on N (see [24, Section 4.2]). Proposition 26 applied to
the function (25) gives

κ

2
(2C+1)−κ−1 ≤× m ≤× (2C+1)−1,

where ≤× stands for inequality to within a constant factor. The last equation
can be rewritten as

C ≤+ K ≤+ (1 + κ)C,

where K is prefix complexity and ≤+ stands for inequality to within an additive
constant. (Better inequalities can be obtained if we use h of a form similar to
(3).)

Remark 27. The main reason [17] for using “i-values” instead of “e-values” in
the late 1990s and early 2000s (see Remark 1) was the desire to cover the case
of measures P that are not necessarily probability measures, such as counting
measures, which makes “integral” more appropriate than “expectation”.
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