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Abstract

This paper continues study of exchangeability martingales, i.e., processes that
are martingales under any exchangeable distribution for the observations. Such
processes can be used for detecting violations of the IID assumption, which
is commonly made in machine learning. Violations of the IID assumption are
sometimes referred to as dataset shift, and dataset shift is sometimes subdivided
into concept shift, covariate shift, etc. Our primary interest is in concept shift,
but we will also discuss exchangeability martingales that decompose perfectly
into two components one of which detects concept shift and the other detects
what we call label shift. Our methods will be based on techniques of conformal
prediction.
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1 Introduction

The most standard way of testing statistical hypotheses is batch testing: we
try to reject a given null hypothesis based on a batch of data. The alternative
approach of online testing (see, e.g., [13] or [12]) consists in constructing a
nonnegative process that is a martingale under the null hypothesis. The ratio
of the current value of such a process to its initial value can be interpreted as
the amount of evidence found against the null hypothesis.

The standard assumption in machine learning is the (general) IID assump-
tion, sometimes referred to (especially in older literature) as the assumption of
randomness: the observations are assumed to be independent and identically
distributed, but nothing is assumed about the probability measure generating a
single observation. Interestingly, there exist processes, exchangeability martin-
gales, that are martingales under the IID assumption; they can be constructed
(see, e.g., [17, Section 7.1] or [16]) using the method of conformal prediction
[17, Chapter 2].

Deviations from the IID assumption have become a popular topic of research
in machine learning under the name of dataset shift [9,10]; in my terminology I
will follow mostly [9]. Analysing general dataset shift is usually regarded as too
challenging a problem, and researchers concentrate on restricted versions, with
restrictions imposed on marginal or conditional probabilities associated with the
probability measure generating a single observation. Different restrictions are
appropriate for different kinds of learning problems.

In this paper we consider problems of classification, in which random ob-
servations (X,Y ) consist of objects X and labels Y , the latter taking a finite
number of possible values. We will be interested in Y → X domains, in the
terminology of [3], in which the objects are causally dependent on the labels.
Under the IID assumption, the consecutive pairs (X,Y ) have the same prob-
ability distribution P . There is a dataset shift if P in fact changes between
observations. Let us say that there is a label shift if the marginal distribution
PY of Y under P changes. Finally, there is a concept shift if the conditional
distribution PX|Y of X given Y changes. Later in this paper we will adopt a
wider understanding of a label shift.

As an example, suppose we are interested in the differential diagnosis be-
tween cold, flu, and Covid-19 given a set of symptoms. Under a pure label shift,
the properties of the three diseases do not change (there is no concept shift),
and only their prevalence changes, perhaps due to epidemics and pandemics.
Under a concept shift, one or more of the diseases change leading to different
symptoms. Examples are new variants of Covid-19 and new strains of flu that
appear every year.

In general, exchangeability martingales may detect both label shift and con-
cept shift. In some cases we might not be interested in label shift and only be
interested in concept shift (or, perhaps less commonly, vice versa). The goal
of this paper is to develop and start investigating exchangeability martingales
targeting only concept shift. It would be ideal to decompose the amount of
evidence found by an exchangeability martingale for dataset shift into two com-
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ponents, one reflecting the amount of evidence found for concept shift and the
other reflecting the amount of evidence found for label shift. Such decomposable
martingales are our secondary object of study.

New exchangeability martingales and their simple theoretical properties will
be the topic of Section 2, and in Section 3 they will be applied to the well-known
USPS dataset. The results reported in the latter section suggest that the ex-
changeability martingales constructed for this dataset in [17, Section 7.1] are
dominated (and greatly improved) by an exchangeability martingale decompos-
able into a product of an exchangeability martingale for detecting concept shift
and an exchangeability martingale for detecting label shift.

The most obvious application of exchangeability martingales is to help in
deciding when to retrain predictors, as discussed in [16]. We should be particu-
larly worried about the changes that invalidate ROC analysis, which is the case
of concept shift in a Y → X domain [3, 18]. Our exchangeability martingales
for concept shift are designed to detect such dangerous changes.

In the context of conformal prediction, concept shift in Y → X domains
requires retraining label-conditional predictors [17, Section 4.5]. For connection
between label-conditional predictors and ROC analysis, see [1, Section 2.7].

2 Theory

For a detailed review of conformal prediction see, e.g., [17], but in this section
I will mainly follow [1, Chapters 1 and 2] (for the generation of conformal p-
values) and [16] (for gambling against those p-values).

As mentioned earlier, we consider observations z = (x, y) that consist of two
components, the object x and the label y. Let X be the measurable space of all
possible objects, and Y be the set of all possible labels. Set Z := X×Y; this is
our observation space. We are interested in classification and so always assume
|Y| <∞; Y is always equipped with the discrete σ-algebra.

A conformity measure A is a function that maps any finite sequence
(z1, . . . , zn) ∈ Zn of observations of any length n ∈ {1, 2, . . . } to a se-
quence (α1, . . . , αn) ∈ Rn of real numbers of the same length that is
equivariant in the following sense: for any n ∈ {1, 2, . . . }, any permuta-
tion π : {1, . . . , n} → {1, . . . , n}, and any sequences (z1, . . . , zn) ∈ Zn and
(α, . . . , αn) ∈ Rn,

(α1, . . . , αn) = A (z1, . . . , zn) =⇒
(
απ(1), . . . , απ(n)

)
= A

(
zπ(1), . . . , zπ(n)

)
.
(1)

In our experiments in Section 3 we will only use conformity measures, but in
theory we are also interested in the following generalization. A label-conditional
conformity measure A is a function that maps any finite sequence (z1, . . . , zn) ∈
Zn of observations of any length n ∈ {1, 2, . . . } to a sequence (α1, . . . , αn) ∈ Rn
of real numbers of the same length that is label-conditionally equivariant : for any
n ∈ {1, 2, . . . }, any permutation π : {1, . . . , n} → {1, . . . , n}, and any sequences
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(z1, . . . , zn) = ((x1, y1), . . . , (xn, yn)) ∈ Zn and (α, . . . , αn) ∈ Rn,

y1 = yπ(1), . . . , yn = yπ(n)

(α1, . . . , αn) = A (z1, . . . , zn)

}
=⇒

(
απ(1), . . . , απ(n)

)
= A

(
zπ(1), . . . , zπ(n)

)
.

In other words, we only require (1) to hold for the permutations that leave the
labels intact.

The label-conditional conformal transducer associated with a label-
conditional conformity measure A is the function p defined by

p(z1, . . . , zn, τ) :=
|{i : yi = yn ∧ αi < αn}|+ τ |{i : yi = yn ∧ αi = αn}|

|{i : yi = yn}|
, (2)

where i ranges over 1, . . . , n, zi = (xi, yi) for all i ∈ {1, . . . , n},

(α1, . . . , αn) := A (z1, . . . , zn) , (3)

and τ ∈ [0, 1]. The values (2) will be referred to as p-values. If the label-
conditional conformity measure A is in fact a conformity measure, we will say
that the label-conditional conformal transducer p associated with it is simple.

Let Z1, Z2, . . . be a sequence of random observations, i.e., random elements
whose domain is a fixed probability space with probability measure P and which
take values in the observation space Z. Each random observation Zn is a pair
Zn = (Xn, Yn), where Xn is a random object and Yn is a random label.

Let us say that the random sequence of observations Z1, Z2, . . . is label-
conditional exchangeable if, for any n ∈ {1, 2, . . . }, any sequence (y1, . . . , yn) ∈
Yn, any sequence of measurable sets E1, . . . , En in X, and any permutation
π : {1, . . . , n} → {1, . . . , n},

y1 = yπ(1), . . . , yn = yπ(n)

=⇒ P (Y1 = y1, . . . , Yn = yn, X1 ∈ E1, . . . , Xn ∈ En)

= P
(
Y1 = y1, . . . , Yn = yn, Xπ(1) ∈ E1, . . . , Xπ(n) ∈ En

)
.

This is an instance of de Finetti’s [2] notion of partial exchangeability. The
sequence Z1, Z2, . . . is exchangeable if, for any n ∈ {1, 2, . . . }, any sequence
of measurable sets E1, . . . , En in Z, and any permutation π : {1, . . . , n} →
{1, . . . , n},

P (Z1 ∈ E1, . . . , Zn ∈ En) = P
(
Zπ(1) ∈ E1, . . . , Zπ(n) ∈ En

)
.

Of course, exchangeability is a stronger property than label-conditional ex-
changeability.

Proposition 1. If the sequence of random observations Z1, Z2, . . . is label-
conditional exchangeable, (τ1, τ2, . . . ) is an independent sequence of independent
random variables each distributed uniformly in [0, 1], and p is a label-conditional
conformal transducer, the sequence of random p-values

Pn := p(Z1, . . . , Zn, τn), n = 1, 2, . . . , (4)

is distributed uniformly in [0, 1]∞.
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For a proof of Proposition 1, see [17, Section 8.7] (Proposition 1 is a special
case of Theorem 8.1 in [17]).

If Z is a measurable space, Z∗ stands for the set of all finite sequences of
elements of Z (equipped with the natural σ-algebra). It includes the empty
sequence 2. A betting martingale is a measurable function F : [0, 1]∗ → [0,∞]
such that F (2) = 1 and, for each sequence (u1, . . . , un−1) ∈ [0, 1]n−1 for any
n ∈ {1, 2, . . . }, ∫ 1

0

F (u1, . . . , un−1, u) du = F (u1, . . . , un−1). (5)

(The three unusual features of this definition are that betting martingales are
required to be nonnegative, start from 1, and are allowed to take value ∞.)
The test martingale associated with the betting martingale F and a sequence
(P1, P2, . . . ) uniformly distributed in [0, 1]∞ (the input p-values) is the sequence
of random variables

Sn = F (P1, . . . , Pn), n = 0, 1, . . . . (6)

The sequence (Sn)n=0,1,... is a nonnegative martingale, in the usual sense of
probability theory [15, Definition 7.1.1], in its own filtration Fn := σ(S1, . . . , Sn)
or the filtration Fn := σ(P1, . . . , Pn) generated by the input p-values. Intu-
itively, this martingale describes the evolution of the capital of a player who
gambles against the hypothesis that the input p-values are distributed uniformly
and independently.

In this paper we will be interested in several classes of test martingales.
The label-conditional conformal martingales are defined as the test martingales
associated with any betting martingale F and a sequence (P1, P2, . . . ) defined
by (4) (under the conditions of Proposition 1) as the input p-values.

Label-conditional conformal martingales are main topic of this paper. They
detect concept shift. It was shown, once again, in [17, Section 7.1] that the
USPS dataset is non-exchangeable, and in Section 3 we will explore sources of
this lack of exchangeability.

Remark 1. It is important that our exchangeability martingales for detecting
concept shift can be used in situations where the labels are so far from being
IID that it would be unusual to talk about label shift. Discussion of label
shift usually presuppose at least approximate independence of labels. Suppose
a sequence of hand-written characters x1, x2, . . . comes from a user writing a
letter. The objects xn are matrices of pixels and the corresponding labels yn take
values in the set {a, b, . . . }. Different instances of the same character, say “a”,
may well be exchangeable among themselves (even conditionally on knowing the
full text of the letter), whereas the text itself will be far from IID; for example,
“q” will be almost invariably followed by “u” if the letter is in English. For
discussions of such partial exchangeability, see, e.g., [2], [11], and [17, Section
8.4].
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In the rest of this section we will look for possible explanations of the differ-
ence between the amount of evidence found against concept shift and against
exchangeability. We will see that in some situation the amount of evidence
found against exchangeability decomposes into two components:

� the amount of evidence found for concept shift;

� the amount of evidence found for label shift.

In these situations the second component can be said to explain the difference.
A label conformity measure A is a conformity measure that satisfies, addi-

tionally, the following property: for any finite sequence (z1, . . . , zn) ∈ Zn of
observations of any length n ∈ {1, 2, . . . }, any sequence (α1, . . . , αn) ∈ Rn of
real numbers of the same length, and any i, j ∈ {1, . . . , n},

yi = yj

(α1, . . . , αn) = A (z1, . . . , zn)

}
=⇒ αi = αj , (7)

where yi and yj are the labels in zi and zj , respectively. In other words, it
assigns conformity scores only to the labels rather than to the full observations.
(Notice that the requirement of equivariance only ensures (7) with “zi = zj”
in place of “yi = yj”.) The conformal transducer associated with a conformity
measure A outputs the p-values

p′(z1, . . . , zn, τ) :=
|{i : αi < αn}|+ τ |{αi = αn}|

n
, (8)

where i ∈ {1, . . . , n}, α1, . . . , αn are defined by (3), and τ ∈ [0, 1]. We will say
that p′ is a label conformal transducer if A is a label conformity measure.

Our method of decomposing exchangeability martingales will be based on
the following result (version of Theorem 8.1 in [17]). Its proof is given in Ap-
pendix A.1.

Theorem 2. If the sequence of random observations Z1, Z2, . . . is exchange-
able, (τ1, τ2, . . . ) and (τ ′1, τ

′
2, . . . ) are independent (between themselves and of

the observations) sequences distributed uniformly in [0, 1]∞, p is a simple label-
conditional conformal transducer, and p′ is a label conformal transducer, the
interleaved sequence of random p-values P1, P

′
1, P2, P

′
2, . . . , where

Pn := p(Z1, . . . , Zn, τn), P ′n := p′(Z1, . . . , Zn, τ
′
n),

is distributed uniformly in [0, 1]∞.

A conformal martingale is defined to be the test martingale associated (via
(6), where F is a betting martingale) with a conformal transducer. If the un-
derlying conformity measure is a label conformity measure, the conformal mar-
tingale will be called a label conformal martingale.

We will say that a label-conditional conformal martingale is simple if its
underlying label-conditional conformal transducer is simple.
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Figure 1: Four exchangeability martingales for the Simple Jumper based on the
nearest-neighbour conformity measure applied to the USPS dataset (left panel)
and its random permutation (right panel)

Having the stream of random p-values P1, P
′
1, P2, P

′
2, . . . produced as in

Theorem 2, we can define two derivative exchangeability martingales: a label-
conditional conformal martingale associated with P1, P2, . . . and a label confor-
mal martingale associated with P ′1, P

′
2, . . . . (There are no restrictions on the

underlying betting martingales.)

Corollary 3. The product of a simple label-conditional conformal martingale
and a label conformal martingale with independent randomizations (i.e., their
sequences of random numbers τ) is an exchangeability martingale.

Such product exchangeability martingales decompose perfectly into com-
ponents for detecting concept shift and label shift. For a short proof of this
corollary, see Appendix A.2.

3 Experiments

The dataset used in our experiment is the well-known USPS dataset of hand-
written digits [17, Appendix B.1], which is known to be non-exchangeable. The
objects xn are 16 × 16 matrices with entries in [−1, 1] (representing pixel in-
tensities), and the labels yn are elements of {0, . . . , 9}; overall there are 9298
labelled images (obtained by merging the original training set of 7291 and test
set of 2007). This dataset is clearly in the Y → X domain (the intended digit
in the writer’s mind causes the resulting matrix of pixels, not vice versa).

Online methods for testing the exchangeability of the USPS dataset are
described in [17, Section 7.1]; those methods are modified and greatly improved
here. Figure 1 shows trajectories of four specific exchangeability martingales,
which will be defined in the next few paragraphs. It plots n ∈ {0, . . . , 9298} vs
the values Sn of the four exchangeability martingales with initial value 1 after
processing the first n observations. The martingales are randomized, but their
trajectories on the USPS dataset do not depend much on the seed used in the
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random number generator. The final values on the USPS dataset (the left panel
of Figure 1) are huge, exceeding 1093 for the blue one, and show that the USPS
dataset is far from exchangeable.

The conformity measure used in Figure 1 is of the nearest-neighbour type:
namely, the conformity score αi of the ith observation (xi, yi) in a sequence
(x1, y1), . . . , (xn, yn) is defined as

αi := min
j∈{1,...,n}

‖xi − xj‖ , (9)

where ‖. . . ‖ is Euclidean norm. (Using the tangent distance in place of the
Euclidean distance ‖x− x′‖ leads to similar results for all experiments reported
in this paper, unlike for the batch experiments in [16, Section 2].) Notice that the
conformity measure (9) completely ignores the labels, although the alternative
αi := minj 6=i:yj=yi ‖xi − xj‖ leads to similar (usually slightly better) results.

The betting martingale used in all our experiments is the Simple Jumper
(SJ ), a modification of the “Sleepy Jumper” as described in [17, Section 7.1].
The SJ involves one parameter, J , which is set to J := 0.1. (Inevitably, there
is some element of data snooping here, since this value was chosen because of
its reasonable performance on the USPS dataset, but it is limited by the use of
round figures.)

The main components of the SJ are two betting functions,

fε(p) := 1 + ε(p− 0.5), p ∈ [0, 1], (10)

where ε ∈ {−1, 1}. For any probability measure µ on {−1, 1}∞ the function

F (u1, . . . , un) :=

∫ n∏
i=1

fεi(ui)µ(d(ε1, ε2, . . . )) (11)

is a betting martingale. The measure µ is defined as the probability distribution
of the following Markov chain with state space {−1, 1}. The initial state is ε1 :=
±1 with equal probabilities. The transition function prescribes maintaining the
same state with probability 1− J and, with probability 1− J , choosing a new
state from the set {−1, 1} with equal probabilities. Notice that the betting
martingale (11) is a deterministic function, even though the Markov chain is
stochastic.

Remark 2. The intuition behind the betting functions (10) is that ε = −1
corresponds to betting on small p-values, and ε = 1 corresponds to betting
on large p-values. The main difference from the Sleepy Jumper [17, p. 176] is
that along with betting on small p-values now we also allow betting on large
p-values. The idea of gambling against the non-uniformity of p-values in the
context of conformal prediction goes back to [4]. Intuitively, the SJ tracks the
best value of the parameter ε used to “calibrate” the p-values produced by
conformal prediction into a martingale. The idea of tracking the best value of ε
goes back to [5] (“tracking the best expert”).
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Each of the four exchangeability martingales in Figure 1 apart from the
product (the blue martingale) is determined by three components:

� the underlying conformity measure, which is either (9) or its modification
ensuring the label invariance (7);

� the transducer, which is either the label-conditional conformal transducer
(2) or the conformal transducer (8); feeding the conformity measure of the
previous item into this transducer we obtain a sequence of p-values;

� the betting martingale F , which in this paper is always the SJ; we feed
the p-values resulting from the previous item into F , as per (6).

The black martingale in the left panel of Figure 1 uses the conformity measure
(9), the conformal transducer (8), and the SJ.

The black martingale may detect any deviations from exchangeability, but
in this paper we are particularly interested in concept shift. In our current
context, concept shift means that, for some reason, the same digit (such as “0”)
starts looking different; perhaps people start writing digits differently, or the
digits are scanned with different equipment. To detect concept shift, we use the
same conformity measure (9), but feed it into the label-conditional conformal
transducer (2); the resulting sequence of p-values is fed into the SJ, as usual.
The resulting test martingale is shown in red in the left panel of Figure 1. Its
final value, of the order of magnitude 1055, is even more impressive than the
final value of the black martingale.

There is, of course, another reason why exchangeability may be violated: we
may have label shift. To detect it, we use the label conformity measure that
assigns the conformity score

α′i := med ({αj : j ∈ {1, . . . , n}, yj = yi}) (12)

to the ith observation (xi, yi) in a sequence (x1, y1), . . . , (xn, yn), where med
stands for the median (the convention for med(∅) does not affect the resulting
p-values). In other words, we average, in the sense of median, the conformity
scores for each class to ensure the requirement of invariance (7).

The label conformal martingale obtained by applying the SJ to the p-values
produced by the label conformal transducer (8) applied to the conformity scores
(12) is shown as the green line in the left panel of Figure 1. It is interesting
that, despite the invariance restriction, the final value of the green martingale,
which is more volatile than the black and red ones, is not much worse than the
final value of the black martingale. The relatively high volatility of the green
line stems from large values of the term |{αi = αn}| in (8) for label conformity
measures, which assign the same conformity score to all images of the same
class.

According to Corollary 3, the product of a label-conditional conformal mar-
tingale and a label conformal martingale is still an exchangeability martingale.
The product is shown as the blue line in the left panel of Figure 1. By con-
struction, the blue martingale is perfectly decomposable. Its final value greatly
exceeds the previous record for the USPS dataset.
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Remark 3. Corollary 3 has an important condition, “with independent ran-
domizations”. It is satisfied in our experiments (if we ignore the fact that
NumPy can only generate pseudorandom numbers) since all our plots are pro-
duced by a single Python program that sets the seed for its random number
generator only once, at the beginning (to 0).

The blue exchangeability martingale, on the one hand, dominates the black
martingale over the USPS dataset and, on the other hand, decomposes into
a product of exchangeability martingales for detecting concept shift and for
detecting label shift. Therefore, the red and green pair in the left panel of
Figure 1 appears to be a significant improvement over the black martingale.

Of course, when the USPS dataset is permuted, as in the right panel of
Figure 1, these successful martingales start quickly losing capital (much quicker
than the more cautious Sleepy Jumper used in [17]: see [17, Figure 7.8] and,
especially, [17, Figure 7.9]).

4 Conclusion

We have seen that the existing methods of constructing exchangeability mar-
tingales can be adapted to detecting concept shift. Perfectly decomposable ex-
changeability martingales turned out to be surprisingly successful on the USPS
dataset of handwritten digits.

This paper concentrated on concept shift in Y → X classification domains.
It is clear, however, that the same methods are applicable, verbatim, when
the observations zi take values in any measurable space and yi are no longer
the labels but defined as f(zi) for a function f taking finitely many values. For
example, yi can be an important feature of the object in zi that we do not wish to
model, but we wish our analysis to be conditional on it (e.g., yi ∈ {male, female}
can be a feature).
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A Some proofs

A.1 Proof of Theorem 2

It suffices to prove, for a fixed horizon N ∈ {1, 2, . . . }, that the random p-values
P ′1, P1, . . . , P

′
N , PN are distributed independently and uniformly in [0, 1] (see,

e.g., [17, Section 8.2]). Let us fix such an N .
The rest of this appendix is a modification of [17, Section 8.7]. First an

informal argument. Imagine that the data sequence Z1, . . . , Zn is generated
in two steps: first a random multiset *Z1, . . . , Zn+ and then its random order-
ing. Already the second step ensures that (P1, P

′
1, . . . , PN , P

′
N ) are distributed

uniformly in [0, 1]2N (even conditionally on *Z1, . . . , Zn+). This can be demon-
strated using the following backward argument. Ignoring borderline effects, P ′N
is uniformly distributed in [0, 1] (at least approximately). When YN is disclosed,
P ′N will be settled. Given what we already know, the distribution of PN will
be uniform. When XN is disclosed, PN will be settled. Now the distribution of
P ′N−1 given what we already know is uniform, etc.

For the formal proof, we will need the following σ-algebras. Let Gn, n =
0, . . . , N , be the σ-algebra

Gn := σ
(
*Z1, . . . , Zn+, Zn+1, τn+1, τ

′
n+1, . . . , ZN , τN , τ

′
N

)
generated by the multiset *Z1, . . . , Zn+ and the other random elements listed in
the parentheses. Let G′n, n = 1, . . . , N , be the σ-algebra σ(Gn, Yn, τ ′n) generated
by Gn, the label Yn of the nth observation, and the random number τ ′n.

The following two lemmas (analogues of [17, Lemma 8.8]) say that�
�

�


P ′N PN P ′N−1 . . . P2 P ′1 P1

GN ⊆ G′N ⊆ GN−1 ⊆ G′N−1 ⊆ · · · ⊆ G1 ⊆ G′1 ⊆ G0

is a stochastic sequence essentially in the usual sense of probability theory [15,
Section 7.1.2]: in the second row we have a finite filtration, and the random
variables in the first row are measurable w.r. to the σ-algebras directly below
them.

Lemma 4. For any trial n = 1, . . . , N , P ′n is G′n-measurable.

Proof. The random multiset of conformity scores of Z1, . . . , Zn is Gn-measur-
able, and so, according to the definition (8) and the invariance requirement (7),
P ′n is G′n-measurable.
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Lemma 5. For any trial n = 1, . . . , N , Pn is Gn−1-measurable.

Proof. This follows from the definition (2) and our requirement that the label-
conditional conformal transducer p should be simple.

We will also need the following analogues of [17, Lemma 8.7]. As in [17], EF
stands for the conditional expectation w.r. to a σ-algebra F .

Lemma 6. For any trial n = 1, . . . , N and any ε ∈ [0, 1],

PG′n {Pn ≤ ε} = ε.

Proof. Follow the proof of [17, Lemma 8.7].

Lemma 7. For any trial n = 1, . . . , N and any ε ∈ [0, 1],

PGn {P ′n ≤ ε} = ε.

Proof. Follow the proof of [17, Lemma 8.7].

Let us now prove the following double sequence of equalities:

PG′n
{
Pn ≤ εn, P ′n−1 ≤ ε′n−1, Pn−1 ≤ εn−1, . . . , P ′1 ≤ ε′1, P1 ≤ ε1

}
= εnε

′
n−1εn−1 . . . ε

′
1ε1 (13)

and
PGn {P ′n ≤ ε′n, Pn ≤ εn, . . . , P ′1 ≤ ε′1, P1 ≤ ε1} = ε′nεn . . . ε

′
1ε1. (14)

We will use induction arranging these equalities into a single sequence: the
equality for PG′1 , the equality for PG1 , the equality for PG′2 , the equality for PG2 ,
etc. The first of these equalities is a special case of Lemma 6. When proving
any other of these equalities, we will assume that all the previous equalities are
true.

The equality for PGn , n ∈ {1, . . . , N}, follows from

PGn {P ′n ≤ ε′n, Pn ≤ εn, . . . , P ′1 ≤ ε′1, P1 ≤ ε1}
= EGn

(
EG′n

(
1P ′n≤ε′n1Pn≤εn . . . 1P ′1≤ε′11P1≤ε1

))
= EGn

(
1P ′n≤ε′n EG′n

(
1Pn≤εn . . . 1P ′1≤ε′11P1≤ε1

))
= EGn

(
1P ′n≤ε′nεn . . . ε

′
1ε1
)

= ε′nεn . . . ε
′
1ε1.

The first equality is just the tower property of conditional expectations. The
second equality follows from Lemma 4. The third equality follows from the
inductive assumption, namely (13). The last equality follows from Lemma 7.

The equality for PG′n , n ∈ {2, . . . , N}, follows from

PG′n
{
Pn ≤ εn, P ′n−1 ≤ ε′n−1, Pn−1 ≤ εn−1, . . . , P ′1 ≤ ε′1, P1 ≤ ε1

}
= EG′n

(
EGn−1

(
1Pn≤εn1P ′n−1≤ε′n−1

1Pn−1≤εn−1
. . . 1P ′1≤ε′11P1≤ε1

))
12



= EG′n
(

1Pn≤εn EGn−1

(
1P ′n−1≤ε′n−1

1Pn−1≤εn−1
. . . 1P ′1≤ε′11P1≤ε1

))
= EG′n

(
1Pn≤εnε

′
n−1εn−1 . . . ε

′
1ε1
)

= εnε
′
n−1εn−1 . . . ε

′
1ε1.

Now the second equality follows from Lemma 5. The third equality follows from
the inductive assumption, namely (14) with n−1 in place of n. The last equality
follows from Lemma 6.

Plugging n := N into (14), we obtain

P {P1 ≤ ε1, P ′1 ≤ ε′1, . . . , PN ≤ εN , P ′N ≤ ε′N} = ε1ε
′
1 . . . εN ε

′
N .

This implies the uniform distribution of (P1, P
′
1, . . . , PN , P

′
N ) in [0, 1]2N (see,

e.g., [14, Lemma 2.2.3]).

A.2 Proof of Corollary 3

Let the simple label-conditional conformal martingale be

Sn = F (P1, . . . , Pn), n = 0, 1, . . . ,

and the label conformal martingale be

S′n = F ′(P ′1, . . . , P
′
n), n = 0, 1, . . . ,

where F and F ′ are betting martingales and P1, P
′
1, P2, P

′
2, . . . is a stream of

p-values as in Theorem 2. Let us check that SnS
′
n, n = 0, 1, . . . , is a martingale

w.r. to the filtration generated by the p-values: for any n ∈ {1, 2, . . . },

EP1,P ′1,...,Pn−1,P ′n−1
(SnS

′
n)

= EP1,P ′1,...,Pn−1,P ′n−1

(
EP1,P ′1,...,Pn−1,P ′n−1,Pn

(SnS
′
n)
)

= EP1,P ′1,...,Pn−1,P ′n−1

(
Sn EP1,P ′1,...,Pn−1,P ′n−1,Pn

(S′n)
)

= EP1,P ′1,...,Pn−1,P ′n−1

(
SnS

′
n−1
)

= EP1,P ′1,...,Pn−1,P ′n−1
(Sn)S′n−1 = Sn−1S

′
n−1,

where each lower index for E signifies the conditioning σ-algebra (namely, the
conditioning σ-algebra is generated by the listed random variables). The third
and last equalities follow from (5).

B Testing the validity of exchangeability mar-
tingales

In this appendix I will discuss ways of testing the validity of exchangeability
martingales. This may be useful, e.g., for debugging their computer implemen-
tations. Notice that already the right panel of Figure 1 can be interpreted as a
weak validity argument.

Our argument for conformal martingales being exchangeability martingales
was based on two statements:
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� The uniform distribution in [0, 1]∞ of the sequence of conformal p-values
(p1, p2, . . . ).

� The function F used in (6) is a betting martingale.

We can test these two statements separately and jointly. In Section B.1 we will
discuss testing the second statement for the Simple Jumper, and in Section B.2
we will discuss joint testing of the two statements. For testing the first statement
(the independence and uniformity of the p-values) we could use the existing
methods of testing random number generators, such as TestU01 suite [8].

B.1 Testing the validity of betting martingales

Let us see how we can test that a function F of the type used in (6) is a betting
martingale. Checking F (2) = 1 is straightforward, and we will assume that
this is satisfied. Fix N ∈ {1, 2, . . . } (already N = 1 is sufficient for testing the
martingale property). To check that E(F (P1, . . . , PN )) ≤ 1, we can generate
K independent sequences (P1, . . . , PN ) of uniformly distributed independent p-
values. For each of them compute F (P1, . . . , PN ), and let Fk be the kth value,
k = 1, . . . ,K. By the (informal) law of large numbers, we expect

1

K

K∑
k=1

Fk ≈ E(F (P1, . . . , PN )) ≤ 1 (15)

for a large K, and we can test whether E(F (P1, . . . , PN )) ≤ 1 by comparing
the left-hand side of (15) with 1. If the left-hand side of (15) is much greater
than 1, we can reject the hypothesis of validity. We will use a large-deviation
inequality (Theorem 8 below) to judge whether the difference between the left-
hand side of (15) and 1 is large enough. We can apply the same method for
checking the analogous inequality, E(F (P1, . . . , PN ) | P1 = p1, . . . , Pn = pn) ≤
1, for conditional probabilities, where n ∈ {1, . . . , N − 1} and p1, . . . , pn ∈
[0, 1]; the only difference is that now we generate K independent replicas for
(Pn+1, . . . , PN ).

The problem with applying standard large-deviation inequalities, such as
Hoeffding’s, Bernstein’s, and Bennet’s (see, e.g., [13, Chapter 3]), is that they
require knowing some characteristics of the random variables Fk that we are not
given, such as upper bounds on them or their variances. However, a suitable
inequality can be derived using Doléans’s supermartingales [13, Section 3.2]); it
is natural to call this inequality Doléans’s inequality.

Theorem 8 (Doléans’s inequality). Let F1, . . . , FK be independent nonnega-
tive random variables with expected value 1, and let κ1, . . . , κM be constants in
(0, 1/2]. Then, for any ε > 0,

P

(
1

K

K∑
k=1

Fk < 1 + min
m=1,...,M

(
κm
K

K∑
k=1

(Fk − 1)2 +
1

κmK
ln
M

ε

))
≥ 1− ε.

(16)
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Our proof will show that it suffices to assume that F1 − 1, . . . , FK − 1 is a
martingale difference, but we will never need this generalization. Moreover, we
are only interested in the case where F1, . . . , FK are IID.

The base form of (16) is where M = 1, and so we have only one κ = κ1:

P

(
1

K

K∑
k=1

Fk < 1 +
κ

K

K∑
k=1

(Fk − 1)2 +
1

κK
ln

1

ε

)
≥ 1− ε.

In hindsight, after seeing the data, the optimal value of κ is the point where

κ

K

K∑
k=1

(Fk − 1)2 +
1

κK
ln

1

ε
→ min,

which is

κ =

√
ln 1

ε∑K
k=1(Fk − 1)2

.

If Fk are IID and have a finite second moment, the optimal κ will have the
order of magnitude K−1/2. However, the assumption of a finite second moment
seems unrealistic in our context, and in our applications, we will take κm :=
K−m/(2M) ∧ 1/2, m = M,M + 1, . . . , 2M − 1. When K ≥ 4 (which is the case
in all our experiments), we can ignore the “ ∧ 1/2” bit.

Proof of Theorem 8. Since, for κ ∈ (0, 1/2], the random process

exp

(
κ

n∑
k=1

(Fk − 1)− κ2
n∑
k=1

(Fk − 1)2

)
, n = 0, 1, . . . , (17)

is a positive supermartingale (namely, Doléans’s supermartingale [13, Proposi-
tion 3.4]) with initial value 1, the expected value of the positive random variable

1

M

M∑
m=1

exp

(
κm

K∑
k=1

(Fk − 1)− κ2m
K∑
k=1

(Fk − 1)2

)
is at most 1. Replacing the first

∑
by max and using Markov’s inequality shows

that
1

M
max

m=1,...,M
exp

(
κm

n∑
k=1

(Fk − 1)− κ2m
n∑
k=1

(Fk − 1)2

)
<

1

ε

with probability at least 1−ε. The last inequality is equivalent to the inequality
≤ in (16).

Remark 4. Theorem 8 gives an upper bound on the average of Fk that holds
with a high probability (assuming ε� 1). It is clear that there are no non-trivial
lower bounds: we can make the probability

P

(
1

K

K∑
k=1

Fk = 0

)
arbitrarily small even when Fk with E(Fk) = 1 are IID.
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N K mean bound median quartiles
100 108 1.00039 1.00167 0.43347 [0.22271,0.93031]
100 109 0.99981 1.00051 0.43351 [0.22275,0.93031]
1000 107 0.77123 1.31286 0.00046 [0.00005,0.00498]
1000 108 0.98494 1.47375 0.00046 [0.00005,0.00498]

Table 1: The mean 1
K

∑
k Fk, its upper bound in (16), and the median and

interquartile range of F1, . . . , FK for two pairs (N,K).
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Figure 2: The cumulative squared deviation
∑K
k=1(Fk − 1)2 vs K on the log

scale for N = 100 (left panel) and N = 1000 (right panel)

Now let us see how these results apply to the SJ martingale. TakingN := 100
and K ∈ {108, 109} in (15), we obtain the results given in Table 1. The mean
is very close to 1 for both values of K and well below its upper bound given in
Theorem 8 (after the < sign) for M := 5. The column “bound” shows that the
upper bound is not monotonic in K (although, of course, it tends to become
tighter as K increases).

The upper bound for N = 100 and K = 108 in Table 1 is computed as

min(1.00167, 1.00409, 1.02477, 1.15611, 1.98495),

where the five numbers correspond to κ = K−0.5,K−0.6,K−0.7,K−0.8,K−0.9.
The optimal value among these κ is K−0.5, which corresponds to the “regular”
case

∑K
k=1(Fk − 1)2 ∼ K. Figure 2 (left panel) plots

∑K
k=1(Fk − 1)2 vs K on

the log scale for N = 100. We can see that the plot is above but fairly close to
the diagonal.

Table 1 shows that the mean is well above the median, and even above
the upper quartile. In general, our experiments demonstrate the difference be-
tween the average and typical behaviour of our exchangeability martingales in
the situation when the null hypothesis of exchangeability is satisfied. Typical
trajectories quickly go down, since gambling against the true null is futile. On
the other, since they are martingales, the average trajectory is close to being
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Figure 3: High, typical, and low paths of exchangeability martingales, as de-
scribed in text, for N = 100 (left panel) and N = 1000 (right panel)

horizontal for large K. This is illustrated in Figure 3. The trajectories shown
in green are those corresponding to the seeds 0–9 of the random number gen-
erator; they can be considered to be typical. The trajectories shown in red are
the 10 with the highest final values among K trajectories, where K is given in
Table 1. Finally, the trajectories shown in blue are the 10 with the lowest final
values. The average trajectory is nearly horizontal (as suggested by Table 1)
even though typical trajectories go down.

Table 1 and Figures 2–3 also have information for N = 1000 and K ∈
{107, 108}. The means in Table 1 are less than 1, let alone the upper bound; for
K = 107 the mean is still far from its limit 1. The upper bound for K = 107 is
computed as

min(9.24172, 2.65390, 1.37740, 1.31286, 2.25304),

the five numbers corresponding to κ = K−0.5,K−0.6,K−0.7,K−0.8,K−0.9. Now
the optimal value among these κ is K−0.8, and indeed the right panel of Figure 2
shows a much more significant deviation from the diagonal than the left panel.
(It is interesting that the bottom left part of the plot hugs the diagonal, the
reason being that typical final values of the martingale are close to 0.) The
difference between the typical and average becomes much more pronounced for
N = 1000.

One disadvantage of the upper bound on 1
K

∑
k Fk given in (16) is its depen-

dence on M , the size of the grid of κs. If the grid is too crude, the first addend
in

κm
K

K∑
k=1

(Fk − 1)2 +
1

κmK
ln
M

ε

is likely to be large (the grid may miss good values of κ), and making the grid
too fine will inflate the second addend. A safer approach is to use 1 +X as an
upper bound on 1

K

∑
k Fk, where X = X(F1, . . . , FK) ≥ 0 is the solution to the
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kind of shift N K mean bound median quartiles
dataset 100 108 1.00005 1.00158 0.43360 [0.22278,0.93045]
concept 100 108 0.99951 1.00160 0.43352 [0.22273,0.93054]
label 100 108 1.00045 1.00200 0.43366 [0.22275,0.93053]
dataset 1000 106 0.75904 1.66428 0.00046 [0.00005,0.00493]
concept 1000 106 0.75609 1.55782 0.00046 [0.00005,0.00494]
label 1000 106 0.75202 1.99644 0.00046 [0.00005,0.00497]

Table 2: The mean 1
K

∑
k Fk, its upper bound in (16), and the median and

interquartile range of F1, . . . , FK for dataset, concept, and label shift and for
two pairs (N,K).

equation

2

∫ 1

1/2

exp

(
K1−uX −K−2u

K∑
k=1

(Fk − 1)2

)
du =

1

ε
(18)

(the left-hand side in increasing in X, and it is clear that there is unique solu-
tion). Since (17) is a supermartingale, we indeed have

P

(
1

K

K∑
k=1

Fk < 1 +X(F1, . . . , FK)

)
≥ 1− ε; (19)

this is a continuous version of Doléans’s inequality (16).
When the discrete version (16) of Doléans’s inequality is replaced by the

continuous version, the bound 1.00167 in Table 1 for N = 100 becomes 1.00175,
slightly worse. The bound 1.31286 for N = 1000, on the other hand, becomes
slightly better, 1.27007.

Remark 5. To avoid an overflow error for N = 100 (and the corresponding
very large K), I had to use the arbitrary precision library mpmath [7]. Another
way to avoid numerical problems is to replace the integral in (18) by the average
over a dense grid (such as {0.50, 0.51, . . . , 1.00}). The inequality (19) will still
hold.

B.2 Joint testing

We can still use Theorem 8 and Equation (18) when P1, . . . , PN in (15) are
generated by a conformal transducer rather than by a random number generator.
This gives us a direct way of testing validity of exchangeability martingales, i.e.,
joint testing of independence and uniformity of the p-values and validity of the
betting martingale.

Table 2 is the analogue of Table 1 for the input p-values being generated
from the nearest-neighbour conformity measure (9). The classification “dataset
shift”, “concept shift”, and “label shift” is as in Figure 1. The results for
N = 100 suggest that the black, blue, and green trajectories in Figure 1 are
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indeed trajectories of valid exchangeability martingales: the means 1
K

∑
k Fk

are very close to 1 and never exceed their upper bounds. For N = 1000, the
evidence for validity is much weaker and the upper bounds are extremely loose;
to get tighter upper bounds and stronger evidence for validity we would need
much larger values of K.
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