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Abstract

Conformal testing is a way of testing the IID assumption based on conformal
prediction. The topic of this paper is experimental evaluation of the perfor-
mance of conformal testing in a model situation in which IID binary observa-
tions generated from a Bernoulli distribution are followed by IID binary obser-
vations generated from another Bernoulli distribution, with the parameters of
the distributions and changepoint known or unknown. Existing conformal test
martingales can be used for this task and work well in simple cases, but their
efficiency can be improved greatly.
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1 Introduction

The method of conformal prediction [17, Chapter 2] can be adapted to testing
the IID model [17, Section 7.1]. The usual testing procedures in mathemati-
cal statistics [5] are performed in the batch mode: we are looking for evidence
against the null hypothesis when given a batch of data (a dataset of obser-
vations). Conformal testing is different in that it processes the observations
sequentially (online), and the amount of evidence found against the null hy-
pothesis is updated when new observations arrive. Online hypothesis testing,
for various null hypotheses, has been promoted in, e.g., [3,8–10]. In this setting,
valid testing procedures are equated with test martingales, i.e., nonnegative
processes with initial value 1 that are martingales under the null hypothesis.

At this time conformal testing is the only known general online procedure
for testing the IID model. Namely, conformal test martingales are the only
known non-trivial examples of exchangeability martingales, i.e., online testing
procedures valid under the IID assumption. An important application of such
procedures is in deciding when to retrain an algorithm of machine learning;
for details, see [18]. This paper does not deal directly with such important
applications and, instead, lays foundations for more efficient methods for making
such decisions.

For a long time it had remained unclear how efficient conformal testing is,
but [13, Section 6] argues that in the binary case conformal testing is efficient at
least in a crude sense. This paper confirms that claim using simulation studies in
a simple model situation. More generally, it proposes a programme of research
into the efficiency of conformal testing in various model situations. The idea is
very standard [6]: to complement the null hypothesis (namely, the IID model)
by a specific alternative hypothesis and investigate the power of our methods
(namely, conformal testing) under the alternative. Unlike the Neyman–Pearson
setting, this will not lead to a well-defined optimization problem, but it will give
us an informal goal, and we will still be able to design efficient “custom-made”
test martingales.

An important by-product of the proposed programme is developing useful
tricks for conformal testing that might be useful in applications. We will see
examples in Section 5.

Our simulation studies will explore the performance of various test martin-
gales, including conformal test martingales, and related processes, to be defined
in Section 4. Conformal prediction uses randomization for tie-breaking, and this
feature is inherited by conformal testing. In particular, conformal test martin-
gales are randomized. All plots in this paper have been produced using the seed
2021 for the NumPy pseudorandom number generator, and the dependence on
the seed does not change any of our conclusions.

Remark 1. In this paper we will avoid the expression “conformal martingale”,
as used in [13], in order to avoid terminology clash with the notion of conformal
martingale introduced by Getoor and Sharpe [2] and discussed by Walsh [22].
(Even though this would not have led to any confusion; in general, the two
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notions are so different that they are unlikely to be used in the same context.)

2 Model situation

This section introduces the main model situation considered in this paper. Our
data consist of binary observations generated independently from Bernoulli dis-
tributions. Let B(π) be the Bernoulli distribution on {0, 1} with parameter
π ∈ [0, 1]: B(π)({1}) = π. We assume that the observations are IID except that
at some point the value of the parameter π changes. Let π0 be the pre-change
parameter and π1 be the post-change parameter. The total number of observa-
tions is N , of which the first N0 come from the pre-change distribution B(π0)
and the remaining N1 := N −N0 from the post-change distribution B(π1).

Our main model situation is the one considered by Ramdas et al. [8, Section
4]. In their setting, π0 = 0.1, π1 = 0.4, N = 104, and N0 = N1 = 5000. Ramdas
et al. construct a processR = Rn which, for any IID probability measure B(π)∞,

is dominated by a test martingale M
(π)
n w.r. to B(π)∞: Rn ≤ M

(π)
n for all n and

π. The trajectory of their process in the model situation is shown in Figure 1
in red (it coincides with the trajectory in Figure 3 in [8] apart from using a
different randomly generated dataset). Figure 1 shows in blue the trajectory
of the Simple Jumper conformal test martingale, as defined in [18], based on
the identity nonconformity measure; the martingale (including the parameter
J = 0.01) is exactly as described in [18, Algorithm 1]. Both processes can serve
as measures of the amount of evidence found against the null hypothesis, and
both perform very well finding decisive evidence against the null hypothesis.

Neither the process R nor the Simple Jumper martingale were designed for
the changepoint detection problem. The process R was designed for the alterna-
tive being a Markov chain, and its good performance in the problem of change-
point detection was an interesting byproduct. The Simple Jumper martingale
was designed in [16] to achieve a reasonable performance on the USPS dataset,
without a clear alternative in mind. In this paper we will take the problem of
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1089 Simple Jumper
R process

Figure 1: The process R of [8] and the Simple Jumper martingale of [18], as
described in text (neither designed for the changepoint detection problem).
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Figure 2: Left panel: Wald’s martingale (red line), the upper benchmark (yellow
line), and the lower benchmark (green line) over the whole dataset. Right panel
(close-up of the left panel): Wald’s martingale and the lower benchmark over
the middle 2000 observations.

changepoint detection more seriously. Our goal will be to explore attainable
final values of test martingales in model situations such as that in [8, Section 4]
(our alternative hypotheses). Our null hypothesis is the IID model, under which
the observations are IID but the value of the parameter π is unrestricted.

3 Two benchmarks

In this section we will discuss possible benchmarks that we can use for evaluating
the quality of our conformal test martingales. For each n ∈ {1, 2, . . . }, let k(n)
be the number of 1s among the first n observations in the binary (consisting of
0 and 1) data sequence. In Sections 3–5 we consider our main model situation:
π0 = 0.1, π1 = 0.4, N = 104, and N0 = N1 = 5000.

The first process that we discuss is the likelihood ratio of the true distribution
to the pre-change distribution:

Wn :=

1 if n ≤ N0(
π1

π0

)k(n)−k(N0) (
1−π1

1−π0

)(n−N0)−(k(n)−k(N0))

otherwise.

This is the optimal test martingale in Wald’s [20, 21] sense, and we will call it
Wald’s martingale. This process, however, is a test martingale only with respect
to the null hypothesis B(π0)

∞ = B(0.1)∞, whereas our null hypothesis is the
IID model. Therefore, it is not a reasonable benchmark. Its trajectory is shown
in red in Figure 2 (over the full dataset on the left, and over its middle part on
the right).

Figure 2 shows in green the infimum of the likelihood ratios

Ln :=


π
k(n)
0 (1−π0)

n−k(n)

( k(n)
n )

k(n)
(1− k(n)

n )
n−k(n) if n ≤ N0

π
k(N0)
0 (1−π0)

N0−k(N0)π
k(n)−k(N0)
1 (1−π1)

(n−N0)−(k(n)−k(N0))

( k(n)
n )

k(n)
(1− k(n)

n )
n−k(n) otherwise

(1)
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(where 00 := 1) of the true data distribution to B(π)∞ over π. We will refer to
this process as the lower benchmark ; its final value LBN := LN is indicative of
the best result that can be attained in our testing problem.

Remark 2. The expression (1) is the infimum over the IID measures of the
likelihood ratios that are individually optimal (for each IID measure) in Wald’s
sense. However, this does not mean that the infimum (1) itself is optimal.
The extreme case for binary observations is where the null hypothesis consists
of all probability measures on {0, 1}∞. The analogue of the lower benchmark
will quickly tend to 0, and so its performance will be much worse than that
of the identical 1 (which is a test martingale under any null hypothesis). For
more general observation spaces, such as in the case of real numbers changing
their distribution (e.g., with N(0, 1) as pre-change distribution and N(1, 1) as
post-change distribution), the IID model becomes too large, and we are in a
situation that is even worse: the analogues of the ratios in (1) become zero.
(Remember that such analogues have the supremum over all IID measures in
the denominator, not the supremum over some parametric model containing
both pre-change and post-change distributions.) The case of (1), however, is
very far from these difficult cases, and even to the left of N0 the trajectory of
Ln is visually indistinguishable from 1.

Figure 2 shows that Wald’s likelihood ratio process grows exponentially fast
after the changepoint, which shows as a linear growth on the log scale. Its trajec-
tory looks like a tangent to the lower benchmark trajectory. It is clear that the
lower benchmark cannot grow exponentially fast: the post-change distribution
B(0.4) is gradually becoming “the new normal”.

In order to develop an alternative to (1) that would also work outside the
binary case, let us replace the denominator of (1), which is the maximum likeli-
hood chosen a posteriori, by the likelihood at a parameter value chosen a priori
but with the knowledge of the stochastic mechanism generating the data. Let
us generalize our setting slightly, assuming that the observations take values in
a finite set and take value i with probability π0,i before the changepoint and
π1,i after the changepoint (so that

∑
i π0,i =

∑
i π1,i = 1). Our goal is to find a

probability measure (ui) for one observation such that the (random) likelihood
ratio of the true data-generating distribution to the Nth power of (ui) is as small
as possible. By the Kelly criterion, the corresponding optimization problem for
the optimal probability measure (ui) in the denominator is

N0

∑
i

π0,i ln
π0,i

ui
+N1

∑
i

π1,i ln
π1,i

ui
→ min,

which simplifies to ∑
i

N0π0,i +N1π1,i

N
lnui → max .

By the nonnegativity of Kullback–Leibler divergence, the optimal solution is

ui :=
N0π0,i +N1π1,i

N
,
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i.e., the weighted average of π0 and π1.
In the binary case, the upper benchmark is

UBN :=
π
k(N0)
0 (1− π0)

N0−k(N0)π
k(N)−k(N0)
1 (1− π1)

N1−(k(N)−k(N0))

πk(N)(1− π)N−k(N)
, (2)

where

π :=
N0

N
π0 +

N1

N
π1.

The upper benchmark is the final value UBN = UN of the likelihood ratio
martingale

Un :=


π
k(n)
0 (1−π0)

n−k(n)

πk(n)(1−π)n−k(n) if n ≤ N0

π
k(N0)
0 (1−π0)

N0−k(N0)π
k(n)−k(N0)
1 (1−π1)

(n−N0)−(k(n)−k(N0))

πk(n)(1−π)n−k(n) otherwise,

(3)

where n = 0, . . . , N . Unlike (1), (3) easily extends to other statistical models.
Some of the standard statistical models are closed under convex closure, and for
them the upper benchmark has a particularly simple expression.

The trajectory of the likelihood ratio martingale (3) is shown as the yellow
line in Figure 2. It is close to a straight line, which makes it look very different
from the lower benchmark. If, instead, we showed UBn (as defined in (2) with
n in place of N) versus n > N0, the lines for the two benchmarks would be in-
distinguishable. Figure 2 only shows that the final values are close (in numbers,
they are 7.6 × 10268 and 3.1 × 10269). However, the line n 7→ UBn is slightly
more difficult to interpret, since it shows the values not of one martingale but
many different ones. We will call it the adaptive upper benchmark (and it will
be used in Figure 7 below).

The last two boxplots in Figure 3 show the median and the quartiles of the
empirical distributions over 106 simulations for the two benchmarks, and their
whiskers show the 5% and 95% quantiles. The boxplots are notched, with the
notches indicating confidence intervals for the median (with this large number
of simulations, the confidence intervals are very narrow; a less extreme case with
visible notches will be shown in Figure 6). These two boxplots are very similar,
and the medians in them are approximately 10274.71 and 10274.88.

The following proposition says that the final values of the upper and lower
benchmarks are fairly close to each other asymptotically.

Proposition 1. As N0 → ∞ and N1 → ∞,

2Nπ(1− π)

N0π0(1− π0) +N1π1(1− π1)
ln

UBN

LBN

law−→ ξ2, (4)

where ξ ∼ N(0, 1).

Informally, (4) implies

log10
UBN

LBN
≈ N0π0(1− π0) +N1π1(1− π1)

2Nπ(1− π) ln 10
ξ2 ≤ ξ2

2 ln 10
, (5)
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Figure 3: The boxplots over 106 simulations for the log10 of the final values
of the custom-made conformal test martingale (“log10 conformal”), the corre-
sponding conformal e-pseudomartingale (“log10 pseudo”), the lower benchmark
(“log10 lower”), and the upper benchmark (“log10 upper”), as described in text.

simulation asymptotic bound

0.0

0.2

0.4
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0.8

Figure 4: The decimal logarithm of UBN /LBN in the model situation, its
asymptotic approximation, and an upper bound for it, as described in text,
based on 106 simulations.

where ≈ is used to signify the approximate equality of distributions, and the
inequality follows from Jensen’s inequality applied to the concave function π ∈
[0, 1] 7→ π(1 − π). Figure 4 shows the distributions of log10(UBN /LBN ), its
approximation as given by the expression following ≈ in (5), and its upper bound
as given by the expression following ≤ in (5). We can see that the number of
observations N = 104 (split in half by the changepoint) is sufficient for the
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asymptotic approximation to work. The median in the column “simulation” is
approximately 0.085, and so the difference between the two benchmarks will not
typically be noticeable on our plots.

4 Custom-made conformal test martingales

In this section we will discuss conformal test martingales specifically adapted
to detecting changepoints. As in the previous section, and until Section 6,
we use B(0.1) as the pre-change distribution and B(0.4) as the post-change
distribution. The number of observations is 104 and the changepoint is in the
middle of the dataset, so that the first 5000 observations are generated from
B(0.1) and the remaining 5000 from B(0.4).

For a detailed definition of conformal test martingales, see, e.g., [13] and
[18]. What follows is a brief reminder focusing on the main ideas. As usual,
we start from a nonconformity measure A. In the case of conformal testing, a
successful A does not have to be a good measure of how badly, or how well, a
new observation conforms to a given multiset of observations; e.g., the Simple
Jumper martingale [18] used in Section 2 does not change if we use −A in
place of A. An input stream of observations zn is transformed into a stream of
(smoothed) p-values pn as usual:

pn :=
|{i : αi > αn}|+ θn |{i : αi = αn}|

n
, (6)

where i ranges over {1, . . . , n}, α1, . . . , αn are the nonconformity scores for
z1, . . . , zn computed using A, and θn are random numbers distributed uniformly
on the interval [0, 1] (all independent).

The standard property of validity for conformal prediction [17, Proposi-
tion 2.8] is that the p-values (6) are independent and distributed uniformly
on [0, 1]. This way we turn our composite null hypothesis (the IID assumption)
into a simple null hypothesis (uniformity) about the p-values. The next step
is to gamble against the uniformity of the p-values using betting functions, i.e.,
functions f : [0, 1] → [0,∞] that integrate to 1. In conformal testing, at step n
a betting function fn is chosen (in a measurable manner) with the knowledge
of the first n − 1 p-values p1, . . . , pn−1. The product Sn := f1(p1) . . . fn(pn),
n = 0, 1, . . . (with S0 := 1), is the corresponding conformal test martingale. It
is interpreted as the capital of a gambler playing against the null hypothesis,
and Sn represents the amount of evidence found against the null hypothesis by
time n. Our game is fair (under the null hypothesis) in that the expected value
of Sn given the history p1, . . . , pn−1 up to time n− 1 equals the capital Sn−1 at
that time.

Conformal test martingales are exchangeability martingales, i.e., satisfy

E(Sn | S1, . . . , Sn−1) = Sn−1 (7)

under any exchangeable distribution on the observations. By de Finetti’s theo-
rem, in this context the assumption of exchangeability is equivalent to the IID
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Figure 5: The custom-made conformal test martingale and the lower benchmark,
as described in text.

assumption under the weak condition that the observation space is Borel (which
is satisfied in applications).

Next let us find a conformal test martingale that is expected to work well
under the true data distribution. Our argument will be somewhat informal.
During the first N0 trials we do not gamble, so let us consider a trial n >
N0. Taking the identity function as the nonconformity measure (the difference
between conformity and nonconformity is essential in this context), by (6) we
obtain a p-value pn ∈ [0, k(n)/n] with probability π1, and we obtain pn ∈
[k(n)/n, 1] with probability 1−π1. Since the expected value of k(n)/n is (N0π0+
(n−N0)π1)/n, the likelihood ratio betting function

fn(p) :=

{
nπ1

N0π0+(n−N0)π1
if p ≤ N0π0+(n−N0)π1

n

n(1−π1)
N0(1−π0)+(n−N0)(1−π1)

otherwise
(8)

is in some sense optimal, as shown in [1, Theorem 2]. The black line in Figure 5
shows the trajectory of the corresponding conformal test martingale.

The betting functions (8) involve the expected value of k(n)/n. We can often
improve the performance of the conformal test martingale shown in Figure 5 if
we replace (8) by

fn(p) :=

{
nπ1

k(n) if p ≤ k(n)
n

n(1−π1)
n−k(n) otherwise.

(9)

However, the resulting process is not a genuine martingale but a conformal
e-pseudomartingale, in the terminology of [14].

In plots such as Figure 5 the trajectories of the two benchmarks, conformal
e-pseudomartingale, and the custom-made conformal test martingale look very
close, but in fact the difference between the final values of those processes can
often be as large as 1010-fold. The boxplot “log10 conformal” in Figure 3 corre-
sponds to the black line in Figure 5 (which represents the first simulation out
of the 106 represented in the boxplot), the boxplot “log10 lower” corresponds to
the green lines in Figures 2 and 5, and the boxplot “log10 upper” corresponds

8
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Figure 6: The analogue of Figure 3 for a fixed dataset (corresponding to the seed
2021 of the NumPy pseudorandom number generator) with an extra boxplot
log10 avg (average over 106 runs) explained in text. The number of simulations
is decreased to 103.

to the yellow lone in Figure 2. The boxplot “log10 pseudo” gives statistics for
the final values of the conformal e-pseudomartingale based on (9), whose plot is
not shown but would have been indistinguishable from the green line in Figure
5. In numbers, the medians for the final values of the four processes in the
order in which they are shown in Figure 3 (which is the ascending order) are,
approximately, 10269.14, 10274.50, 10274.71, and 10274.88 (the last two numbers
were already given above).

The boxplot for the conformal test martingale in Figure 3 is slightly longer
than the other three boxplots. The explanation is that conformal test martin-
gales are randomized (because of the dependence of (6) on θn), unlike, e.g., the
lower benchmark process. The corresponding boxplots for a fixed dataset (the
same one that was used in Figures 1, 2, and 5) are shown in Figure 6, along
with an extra boxplot labelled log10 avg, to be explained momentarily.

It appears from Figure 6 that, for a fixed dataset, the final values of the
conformal e-pseudomartingales are constant a.s. This is indeed the case: e.g.,
with probability one under any IID measure, the condition p ≤ k(n)/n in (9)
holds for p = pn if and only if the nth observation is 1.

On the other hand, the final value of the conformal test martingale in Fig-
ure 6 is very volatile, with the upper quartile around 103 times larger than
the lower quartile. An easy way to decrease the volatility of a randomized test
martingale is to average its trajectory over a number of independent runs (as
explained in [15] in the context of e-variables); normally, the result will still be
a valid test martingale. The results of averaging the conformal test martingale
over 106 runs are shown in the new boxplot labelled log10 avg. The operation
of averaging not only reduces volatility but also greatly improves the typical
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performance, the reason being that on the log scale the average of vastly differ-
ent numbers is close to their maximum. The first two boxplots in Figure 6 are
based on 103 simulations of the conformal test martingale (for the first boxplot)
or averaged conformal test martingale (for the second one).

Unfortunately, in the case of averaging conformal test martingales there is
no guarantee that the average will still be an exchangeability martingale, since
different conformal test martingales involve different filtrations [13, Remark 3.3].
And indeed, in Section 7 we will see an example where the average is not an
exchangeability martingale.

Bayesian conformal testing

The custom-made conformal test martingale with the betting functions (8) is
optimal only in a crude sense, and better conformal test martingales can be
designed. The function (8) is discontinuous, and it leads to a drop in its perfor-

mance: when p is close to the borderline value N0π0+(n−N0)π1

n , it is better not
to gamble at all than to use (8).

In this section we will use a Bayesian method that is more efficient at testing
(albeit less efficient computationally). The p-values p1, p2, . . . are generated by
a completely specified stochastic mechanism. According to [1, Theorem 2],
the optimal (in the Kelly-type sense of that paper) betting functions fn are
given by the density of the predictive distribution of pn conditional on knowing
p1, . . . , pn−1. Let us find these predictive distributions. We will use the notation
U [a, b], where a < b, for the uniform probability distribution on the interval [a, b]
(so that its density is 1/(b− a)).

We are in a typical situation of Bayesian statistics. The Bayesian parameter
is the binary sequence (z1, z2, . . . ) ∈ {0, 1}∞ of observations, and the prior
distribution on the parameter is the changepoint distribution: the observations
are independent, zn = 1 with probability π0 if n ≤ N0, and zn = 1 with
probability π1 if n > N0. Let us set

π∗
n :=

{
π0 if n ≤ N0

π1 if n > N0;

this is the probability of zn = 1. The Bayesian observations are the conformal
p-values p1, p2, . . . . Given the parameter, the distribution of pn is

pn ∼

{
U [0, k/n] if zn = 1

U [k/n, 1] if zn = 0,

where k := z1 + · · ·+ zn is the number of 1s among the first n observations.
Let wn

k , where n = 0, 1, . . . and k = 0, . . . , n, be the total posterior prob-
ability of the parameter values z1, z2, . . . for which z1 + · · · + zn = k; we will
use them as the weights when computing the predictive distributions for the p-
values. We can compute the weights wn

k recursively in n, starting from w0
0 := 1,

10
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Figure 7: The custom-made and Bayes–Kelly conformal test martingales and
two benchmarks, as described in text.

as follows. First we compute the unnormalized weights

w̃n
k := wn−1

k−1π
∗
nl

n−1
k−1 (1, pn) + wn−1

k (1− π∗
n)l

n−1
k (0, pn),

where l is the likelihood defined by

lnk (1, p) :=

{
n+1
k+1 if p ≤ k+1

n+1

0 otherwise,

lnk (0, p) :=

{
n+1

n−k+1 if p ≥ k
n+1

0 otherwise.

After that we normalize them:

wn
k :=

w̃n
k

w̃n
0 + · · ·+ w̃n

n

.

Given the posterior weights for the previous step, we can find the predictive
distribution for pn as

pn ∼
n−1∑
k=0

wn−1
k

(
π∗
nU

[
0,

k + 1

n

]
+ (1− π∗

n)U

[
k

n
, 1

])
.

Therefore, the betting functions for the resulting Bayes–Kelly conformal test
martingale are

fn(p) =

n−1∑
k=0

wn−1
k

(
n

k + 1
π∗
n1p≤ k+1

n
+

n

k
(1− π∗

n)1p≥ k
n

)
. (10)

For experimental results, see Figure 7, which is an analogue of Figure 5
over the last 1000 observations (the most informative part of the plot) and
also shows the Bayes–Kelly conformal test martinale and the adaptive upper
benchmark. The Bayes–Kelly conformal test martinale appears very close to the
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Figure 8: The weights w104

k , for a range of k (the weights are virtually zero out-
side thise range) at the last step for the Bayes–Kelly conformal test martingale.

two benchmarks and is sandwiched between them (for other seeds for the NumPy
pseudorandom number generator, the difference between the custom-made and
Bayes–Kelly conformal test martingales often becomes less pronounced).

The custom-made conformal test martingale (8) can be considered to be a
simplification of the Bayes–Kelly conformal test martingale (10). If we assume
that the weights wn

k , k = 0, . . . , n, are concentrated at

k ≈ k + 1 ≈ N0π0 + (n−N0)π1,

(10) will simplify to (8). Figure 8 shows the weights for the last step of the
Bayes–Kelly conformal test martingale. They are concentrated around k =
2420, which is not so different from N0π0 +N1π1 = 2500.

5 More natural conformal test martingales

The martingales whose trajectories are shown in Figures 2–5 depend very much
on the knowledge of the true data-generating mechanism. Can we obtain com-
parable results without blatant optimization (requiring such knowledge)? This
is the topic of this section.

Let us generalize the betting function (8) to

f(a,b)(p) :=

{
b
a if p ≤ a

1−b
1−a otherwise,

(11)

where a, b ∈ (0, 1). It is easy to see that
∫
f(a,b) = 1. Apart from the betting

functions (11) we will use the trivial function f□, f□(p) := 1 for all p. Let Sn

be the conformal test martingale

Sn :=

∫
fs1(p1) . . . fsn(pn)µ(d(s1, s2, . . . )), (12)

where p1, p2, . . . is the underlying sequence of conformal p-values and µ is the
distribution of the following Markov chain with states s1, s2, . . . .
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Algorithm 1 Sleeper/Stayer ((p1, p2, . . . ) 7→ (S1, S2, . . . ))

1: S□ := 1
2: for (a, b) ∈ G2: Sa,b := 0

3: for n = 1, 2, . . . :
4: for (a, b) ∈ G2: Sa,b := Sa,bf(a,b)(pn)

5: Sn := S□ +
∑

(a,b)∈G2 Sa,b

6: for (a, b) ∈ G2: Sa,b := Sa,b +RS□/(G− 1)2

7: S□ := (1−R)S□

The Markov chain is defined in the spirit of tracking the best expert in
prediction with expert advice [4, 12]. The state space is {□} ∪ (0, 1)2, and
R ∈ (0, 1) is the parameter (typically a small number). The initial state is
s1 := □ (the sleeping state). The transition function is:

� if the current state is □, with probability 1 − R the state remains □,
and with probability R a new state (a, b) is chosen from the uniform
distribution in (0, 1)2;

� the states (a, b) ∈ (0, 1)2 are absorbing: if the current state is (a, b) ∈
(0, 1)2, it will stay (a, b).

In our implementation of the procedure (12), we replace the square (0, 1)2

by the grid G2, where

G :=

{
1

G
,
2

G
, . . . ,

G− 1

G

}
(13)

and G (positive integer) is another parameter. The resulting procedure is shown
as Algorithm 1.

The intuition behind Algorithm 1 is that, in order to gamble against the
uniformity of (p1, p2, . . . ), we distribute our initial capital of 1 among accounts
Sa,b indexed by (a, b) ∈ G2, and there is also a sleeping account S□. We start
from all money invested in the sleeping account, but at the end of each step
a fraction R of that money is moved to the active accounts Sa,b and divided
between them equally (see lines 6 and 7). On account Sa,b we gamble against
the uniformity of the input p-values using the betting function f(a,b).

Figure 9 (the line in cyan) suggests that we can improve on the result of
Figure 1 using a fairly natural, and in fact very basic, conformal test martingale.
In Figure 9 we use the identity nonconformity measure and the Sleeper/Stayer
betting martingale of Algorithm 1, and the parameters are R := 0.001 and
G := 10; therefore, a and b are chosen from the grid {0.1, 0.2, . . . , 0.9}. The
final value of the resulting conformal test martingale is closer (on the log scale)
to those in Figure 5 than in Figure 1.

To improve further the performance of a natural conformal test martingale,
let us make another step towards the custom-made martingale (8). The new
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Figure 9: Various conformal test martingales and the R process [8], as described
in text; the final values are approximately 2.3 × 1021 (R process), 4.7 × 1094

(Simple Jumper), 2.8×10197 (Sleeper/Stayer), and 4.6×10257 (Sleeper/Drifter).

Algorithm 2 Sleeper/Drifter ((p1, p2, . . . ) 7→ (S1, S2, . . . ))

S0 := S□ := 1
for i = 1, 2, . . . and (a, b) ∈ G2: Si,a,b := 0

for n = 1, 2, . . . :
for i < n/M and (a, b) ∈ G2:

a′ := iM
n a+

(
1− iM

n

)
b

Si,a,b := Si,a,bf(a′,b)(pn)

Sn := S□ +
∑

(i,a,b)∈{1,2,... }×G2 Si,a,b

if n is divisible by M :
for (a, b) ∈ G2: Sn/M,a,b := RMS□/(G− 1)2

S□ := (1−RM)S□

martingale will be defined as an average of the following “expert martingales”.
An expert martingale is characterized by a vector parameter (N0, π0, π1) ∈
{1, 2, . . . } × (0, 1)2 and is the custom-made martingale (8) for these postulated
(N0, π0, π1), rather than the unknown real ones. (In this and the next para-
graphs, we will use N0, π0, π1 as local variables; in the end they will be inte-
grated out, and we will again be able to use them in the global sense introduced
in Section 2.) The expert sleeps (does not gamble) until time N0, and at each
time n > N0 it uses the betting function (8). This betting function is of the
form (11) with b := π1 and a = an being the weighted average of π0 and π1 with
the weights N0/n and 1 − N0/n, respectively. Therefore, an gradually drifts
from π0 towards π1.

The Sleeper/Drifter martingale depends on three parameters: G, determin-
ing the grid (13), M (M := 1 is a good value, but larger values of M improve
computational efficiency), and R (the rate at which the experts, who are orig-

14
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Figure 10: The analogue of Figure 2 (left panel) for the medium scenario.

inally sleeping, wake up). It is the average of the experts w.r. to the following
probability measure:

� all three parameters are independent;

� N0 = iM , where i ∈ {1, 2, . . . } is generated according to the geometric
distribution with parameter RM ;

� π0 and π1 are generated from the uniform distribution in the grid (13).

The overall procedure is given as Algorithm 2. The key array in this algorithm
is (Si,a,b), where Si,a,b is the total capital of the experts drifting from a towards
b who woke up at time iM . Now we can say that S□ is the total capital of the
experts who are still asleep; as an expert wakes up, its capital moves from S□

to one of the Si,a,b.
The performance of Algorithm 2 is shown as the magenta line in Figure 9.

The parameters used there are G = 10, M = 100, and R = 0.001. (There is
not much sensitivity to the values of the parameters; e.g., if we decrease R to
10−4 or 10−5, we will get final values of about the same order of magnitude:
4.9× 10258 or 7.6× 10257, respectively.)

6 Smaller datasets

In this section we will consider two less extreme scenarios, which we will label
as medium and small (and will refer to the scenario of the previous sections as
large). In the medium scenario, 1000 observations from B(0.3) are followed by
1000 observations from B(0.5). Figures 10–12 are analogues for the medium
scenario of some figures in the previous sections and exhibit similarities with
the large scenario.

In the small scenario, 100 observations from B(0.2) are followed by 1000
observations from B(0.5). The dependence on the choice of parameters for
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Figure 11: The analogue of Figures 5 (shown as the left panel) and 9 (shown as
the right panel) in the medium scenario.
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Figure 12: The analogue of Figure 3 for the medium scenario, with the number
of simulations still 106.
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Figure 13: The analogue of Figure 2 for the small scenario.
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Figure 14: The analogue of Figures 5 (shown as the left panel) and 9 (shown as
the right panel) in the small scenario.
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Figure 15: The analogue of Figure 3 for the small scenario, with the number of
simulations still 106.

conformal test martingales becomes much more pronounced, but we keep all old
values for the parameters of the Sleeper/Stayer and Sleeper/Drifter (even though
other values may improve their performance significantly). One difference from
the results for the large and medium scenarios is the improved performance of
the Simple Jumper as compared with the Sleeper/Stayer and Sleeper/Drifter.
Another difference is that, since most of the observations in the small scenario
are post-change, we can clearly see that all martingales, and especially the
Simple Jumper, at some point start losing evidence. Possible ways of preventing
heavy loss of evidence are discussed in [10, Chapter 11].
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7 Testing the validity of putative test martin-
gales

The performance of some of the conformal test martingales constructed in this
paper might appear too good, and some of our processes are not guaranteed to be
exchangeability martingales (such as the average process of Figure 6). Therefore,
it may be useful to be able to test whether such processes are martingales
in simulation studies (of course, we have theoretical guarantees of validity for
conformal test martingales, but even for them mistakes in implementation are
always possible). The testing method of this section will use the following
large deviations inequality based on Doléans’s supermartingale of [10, Section
3.2], which we first give in terms of e-values [19] and p-values. The defining
property of an e-value is that it is nonnegative and its expected value is at most
one; a large e-value is interpreted as evidence against our postulated stochastic
mechanism (the null hypothesis).

Proposition 2. Let F1, . . . , FK , K ≥ 4, be independent nonnegative random
variables with expected value 1, and let M be a positive integer. Then

e :=
1

M

M∑
m=1

exp

(
K1−m/2M (F̄ − 1)−K−m/M

K∑
k=1

(Fk − 1)2

)
, (14)

where F̄ := 1
K

∑K
k=1 Fk is the average of the Fk, is a valid e-value, and 1

e ∧ 1 is
a valid p-value.

Proof. The statement about (14) being an e-value follows from the right-hand
side of (14) being the final value of a test supermartingale (i.e., a nonnega-
tive supermartingale with initial value 1), namely an average of Doléans super-
martingales [10, Proposition 3.4]. The statement about 1

e ∧ 1 being a p-value
follows from e 7→ 1

e ∧ 1 being an e-to-p calibrator [19, Proposition 2.2].

In the main part of this section we will use Proposition 2 in the form of the
following inequality.

Corollary 3. Let F1, . . . , FK , K ≥ 4, be independent nonnegative random vari-
ables with expected value 1, let M be a positive integer, and let ϵ > 0. Define
X > 0 as the only solution to

M∑
m=1

exp

(
K1−m/2MX −K−m/M

K∑
k=1

(Fk − 1)2

)
=

M

ϵ
(15)

(the left-hand side is strictly increasing in X). Then

P

(
1

K

K∑
k=1

Fk < 1 +X

)
≥ 1− ϵ. (16)
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(π0, π1) (N0, N1) K mean bound median quartiles

(0.1, 0.4) (10, 10) 109 0.99993 1.00054 0.33016 [0.13964, 0.84562]

(0.4, 0.5) (10, 10) 109 1.00000 1.00008 0.89615 [0.66667, 1.21212]

(0.4, 0.5) (100, 100) 109 0.99985 1.00040 0.36630 [0.14232, 0.94952]

Table 1: The mean 1
K

∑
k Fk, its upper bound in (16), and the median and

interquartile range of F1, . . . , FK .

(π0, π1) (N0, N1) K mean bound median quartiles

(0.1, 0.4) (10, 10) 106 0.99894 1.00570 0.67879 [0.38007, 1.37617]

(0.4, 0.5) (10, 10) 106 1.00007 1.00207 0.94866 [0.74567, 1.15930]

(0.4, 0.5) (100, 100) 106 0.99972 1.00994 0.43602 [0.17872, 1.06452]

Table 2: The analogue of Table 1 for the average of the conformal test martingale
over 103 runs.

Proof. If the inner inequality in (16) is violated, we will have

1

M

M∑
m=1

exp

(
K−m/2M

K∑
k=1

(Fk − 1)−K−m/M
K∑

k=1

(Fk − 1)2

)
≥ 1

ϵ

instead of (15). The probability of this event is at most ϵ since the reciprocal
to (14) is a p-value.

Let us use M := 5. For a few sets of values for (N0, N1) and (π0, π1), Ta-
ble 1 gives some statistics for the final values Fk of the custom-made conformal
test martingale with the betting functions (8) designed for the pre-/post-change
parameters (π0, π1) but run on the IID data with parameter π0; the numbers
of pre- and post-change observations is N0 and N1 respectively. The close-
ness of the means and bounds to 1 suggests that the processes are really test
martingales. Of course, the bound is never exceeded by the actual mean.

Table 2 is analogous to Table 1 but gives statistics for the average over
103 runs of conformal test martingales. The means are still close to 1 and do
not exceed the bounds. Unfortunately, this kind of statistics does not allow
us to check deviations of the average conformal test martingale from being a
martingale, since the expectation of the final value of the average is still 1.

The method that we have used so far can be easily adapted for the purpose
of checking the martingale property, and it will show that the average conformal
test martingale is not a martingale itself (under the null hypothesis). Let Sn be
an average conformal test martingale; it will be assumed positive. The defining
property of a martingale is (7). The method that we have used tests the crude
implication E(Sn) = 1 of the defining property, which we know to hold for an
average of martingales; the modification will test E(Sn | Sn−1) = Sn−1, i.e.,
E(Sn/Sn−1 | Sn−1) = 1.
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K∗ K A mean bound median quartiles

106 482,311 103 1.00426 1.00101 0.99580 [0.89924, 1.00682]

109 400,000,071 1 1.00001 1.00007 0.83333 [0.83333, 1.42857]

109 447,299,138 10 1.00266 1.00005 0.96172 [0.88585, 1.06718]

109 470,992,540 102 1.00353 1.00005 0.98566 [0.91111, 1.02118]

109 482,226,950 103 1.00452 1.00004 0.99589 [0.89931, 1.00684]

Table 3: Statistics for the conditional validity of the average conformal test
martingale with (π0, π1) = (0.1, 0.4), as described in text.

Table 3 summarizes a case where E(Sn/Sn−1 | Sn−1 ≥ 1) > 1 (so that S
possesses a momentum: a rise in the value of S creates a tendency to a further
rise). The conformal test martingale is the one with the betting functions (8),
where N0 := 2 and (π0, π1) = (0.1, 0.4); it is averaged over A simulations. The
value of K is the number of runs of the average conformal test martingale with
Sn−1 ≥ 1, where n := 5. These runs are selected from K∗ runs by discarding
the runs leading to Sn−1 < 1. The mean, median, and quartiles are those of
Sn/Sn−1 over the K selected runs, and the bound is as given by Corollary 3 with
ϵ := 0.01. We can see that the bound is exceeded by the actual mean except for
the case where A = 1 (and so there is no averaging). The mean mostly depends
on A, and the bound on K.

To get an idea of how serious the violation of the bounds in Table 3 is, we
can apply Proposition 2 directly. The p-values computed using Proposition 2
from Table 3 are tiny, except, of course, for the second row, where the e-value
is 0.25 and the p-value is 1. Even for the top row, the p-value is below 10−44.

8 Directions of further research

In this paper we have discussed only the case of binary observations, and only
the alternative hypothesis of a changepoint, where the simple betting functions
(11) are appropriate. Similar methods, first of all Bayesian conformal testing of
Section 4, can be applied to the case of Markov alternatives considered in [8].

The binary case can be regarded as a first step of an interesting research
programme. We can simulate different model situations that can be analyzed
theoretically and develop suitable conformal test martingales, going outside the
binary case. Perhaps the next in line are the Gaussian model with a constant
variance and a change in the mean, the Gaussian model with a constant mean
and a change in the variance, and the exponential model (as in, e.g., [20, Part
II] and [11]). See [7] for some results in this direction.

Custom-made conformal test martingales (such as those in Section 4) provide
clear goals for more natural conformal test martingales, and even give ideas of
how these goals can be attained. These ideas, in turn, add to the toolbox that
we can use for dealing with practical problems, where we often have only a
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vague notion of the true data-generating distribution.
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Analysis: Hypothesis Testing and Changepoint Detection. CRC Press, Boca
Raton, FL, 2015.

[12] Vladimir Vovk. Derandomizing stochastic prediction strategies. Machine
Learning, 35:247–282, 1999.

[13] Vladimir Vovk. Testing randomness online, On-line Compression Modelling
project (New Series), http://alrw.net, Working Paper 24, June 2019.
Journal version: Statistical Science 36:595–611, 2021.

[14] Vladimir Vovk. Conformal e-prediction for change detection, On-line Com-
pression Modelling project (New Series), http://alrw.net, Working Paper
29, June 2020.

[15] Vladimir Vovk. A note on data splitting with e-values: online appendix
to my comment on Glenn Shafer’s “Testing by betting”. Technical Report
arXiv:2008.11474 [stat.ME], arXiv.org e-Print archive, August 2020. This
is part of a comment on [9].

[16] Vladimir Vovk. Testing for concept shift online, On-line Compression Mod-
elling project (New Series), http://alrw.net, Working Paper 31, Decem-
ber 2020.

[17] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning
in a Random World. Springer, New York, 2005.

[18] Vladimir Vovk, Ivan Petej, Ilia Nouretdinov, Ernst Ahlberg, Lars Carlsson,
and Alex Gammerman. Retrain or not retrain: Conformal test martingales
for change-point detection, On-line Compression Modelling project (New
Series), http://alrw.net, Working Paper 32, February 2021.

[19] Vladimir Vovk and Ruodu Wang. E-values: Calibration, combination, and
applications. Annals of Statistics, 49:1736–1754, 2021.

[20] Abraham Wald. Sequential Analysis. Wiley, New York, 1947.

[21] Abraham Wald and Jacob Wolfowitz. Optimum character of the sequential
probability ratio test. Annals of Mathematical Statistics, 19:326–339, 1948.

[22] John B. Walsh. A property of conformal martingales. Séminaire de proba-
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