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Abstract

The topic of this paper is testing the assumption of exchangeability, which is the
standard assumption in mainstream machine learning. The common approaches
are online testing by betting (such as conformal testing) and the older batch
testing using p-values (as in classical hypothesis testing). The approach of this
paper is intermediate in that we are interested in batch testing by betting; as a
result, p-values are replaced by e-values. As a first step in this direction, this
paper concentrates on the Markov model as alternative. The null hypothesis of
exchangeability is formalized as a Kolmogorov-type compression model, and the
Bayes mixture of the Markov model w.r. to the uniform prior is taken as simple
alternative hypothesis. Using e-values instead of p-values leads to a computa-
tionally efficient testing procedure. Two appendixes discuss connections with
the algorithmic theory of randomness; in particular, the test proposed in this
paper can be interpreted as a poor man’s version of Kolmogorov’s deficiency of
randomness.
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1 Introduction

Exchangeability is the fundamental assumption in machine learning. Traditional
machine learning studies prediction under exchangeability (see, e.g., [28]), while
newer methods consider deviations from exchangeability (see, e.g., [19]). The
role of exchangeability in conformal prediction, as subarea of machine learning,
is briefly reviewed in [32, Sect. 13.5.1].

Testing the assumption of exchangeability is a traditional topic in conformal
prediction (see, e.g., [32, Part III]). It is done in the online mode and is based on
conformal test martingales. This area is often referred to as conformal testing.

The classical approach to testing exchangeability, which developed in statis-
tics starting from at least 1943 [39], proceeds in the batch mode: we are given
the data sequence as one batch rather than getting its elements sequentially one
by one; see [12, Sect. 7.2] for a review. As always in classical hypothesis testing,
testing exchangeability in the batch mode is based on p-values.

In this paper we will adapt standard methods of conformal testing to testing
exchangeability in the batch mode. In particular, p-values will be replaced by e-
values [36, 3], which are widely used in conformal testing: namely, conformal test
martingales are obtained by compounding e-values. An important advantage of
e-values is that their use facilitates efficient computations.

The null hypothesis of exchangeability will be defined in Sect. 2 using the
terminology of compression modelling, widely used in conformal prediction [32,
Chap. 11]. Compression modelling is an algorithm-free version of Kolmogorov’s
way of stochastic modelling: cf. [30], [33], [38, Sect. 2], and [32, Sect. 11.6.1].
Kolmogorov’s original version will be discussed in Appendix A.

In Sect. 2 we also define e-variables, which are functions for producing e-
values in testing exchangeability (or another null hypothesis). We will derive
our main e-variable as likelihood ratio for a Markovian alternative hypothesis,
which we will introduce in Sect. 4. A simple optimality property of the likelihood
ratios is derived in Sect. 3.

After defining our main alternative hypothesis in Sect. 4, we derive an effi-
cient algorithm for computing the corresponding e-variable. The power of this
e-variable is the topic of Sect. 5. The algorithm’s performance in view of the
results of Sect. 5 is studied in Sect. 6 using simulated data. Section 7 concludes.

Appendix A describes Kolmogorov’s original ideal picture of algorithmic ran-
domness. In the following Appendix B we will discuss possible ways of making
this picture more practical, and in Appendix C will go deeper into another
class of alternatives for testing exchangeability (namely, into the changepoint
alternatives).

In traditional statistics, the p-value version of the procedure of this paper is
often presented in terms of the Neyman structure; see, e.g., [13, Sect. 4.3]. We
discuss its counterpart for e-values in Appendix D.
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2 Testing exchangeability

We consider the simplest binary case, and our observation space is Z := {0, 1}.
Fix an integer N > 1, which we will refer to as the time horizon. We are
interested in binary data sequences (z1, . . . , zN ) ∈ Ω := ZN . A Kolmogorov
compression model (KCM) is a summarising statistic t : Ω → Σ, where Σ is
a finite set (the summary space), together with the implicit statement that
given the summary t(z1, . . . , zN ) (for which we do not make any stochastic as-
sumptions) the actual data sequence (z1, . . . , zN ) is generated from the uniform
probability measure on the set t−1(t(z1, . . . , zN )) of all data sequences com-
patible with the summary. Our null hypothesis is the KCM, which we call
the exchangeability compression model (ECM), tE(z1, . . . , zN ) := z1 + · · ·+ zN .
(In the current binary case this is equivalent to the more standard definition
tE(z1, . . . , zN ) := *z1, . . . , zN+ used in [32, Sect. 11.3.1], where * · · · + stands for
a multiset.)

KCM and ECM are two of the three main classes of models used in this
paper. The third, largest, class will be introduced later in this section and
called BCM. Therefore, the inclusions between the classes will be

ECM ⊆ KCM ⊆ BCM. (1)

Let us say that a probability measure P on Ω agrees with a summarising
statistic t if the data sequences with the same summary have the same P -
probability. A probability measure P on Ω is exchangeable if P ({(z1, . . . , zN )})
depends on z1, . . . , zN only via z1 + · · ·+ zN (equivalently, via *z1, . . . , zN+).

Lemma 2.1. The exchangeable probability measures on Ω are exactly the proba-
bility measures that agree with the ECM (the mixtures of the uniform probability
measures on t−1

E (k), k ∈ {0, . . . , N}).

The easy proof of Lemma 2.1 is omitted. It shows that, in terms of stan-
dard statistical modelling, we can define our null hypothesis as the set of all
exchangeable probability measures on Ω.

An e-variable w.r. to a probability measure is a nonnegative function on Ω
with expectation at most 1. An exchangeability e-variable is a function E : Ω →
[0,∞) whose average over each t−1

E (k) is at most 1. Such a function E can be
used for testing the assumption of exchangeability: if E is chosen in advance,
observing a very large E(ω) for the realized outcome ω ∈ Ω casts doubt on the
exchangeability assumption.

Alternatively (and equivalently), an exchangeability e-variable may be de-
fined as an e-variable w.r. to every exchangeable probability measure.

Proposition 2.2. The two meanings of an exchangeability e-variable coincide.

Proof. If the average of E over each t−1
E (k) is at most 1, it will be an e-variable

w.r. to each exchangeable probability measure by Lemma 2.1.
Now suppose E is an e-variable w.r. to each exchangeable probability mea-

sure. Since the uniform probability measure on t−1
E (k) is exchangeable, the

average of E over t−1
E (k) will be at most 1.
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All null hypotheses discussed in this paper will be KCMs. In the main part
of the paper we will concentrate on the ECM, but in this and next sections
we will also give more general definitions. An e-variable w.r. to a KCM t is a
function E : Ω → [0,∞) such that the arithmetic mean of E over t−1(σ) is at
most 1 for every σ ∈ t(Ω). E-values are values taken by e-variables.

Disintegration of the alternative hypothesis

Let us fix a simple alternative hypothesis Q, which is a probability measure on
Ω. Our statistical procedures will depend on Q only via the corresponding batch
compression model (BCM). A BCM is a pair (t, P ) such that t : Ω → Σ is a
summarising statistic and P : Σ ↪→ Ω (to use the notation of [32, Sect. A.4]) is
a Markov kernel such that P (σ) is concentrated on t−1(σ) for each σ ∈ Σ. As
before, we refer to t(ω) as the summary of ω. Kolmogorov compression models
are a special case in which each P (σ) is the uniform probability measure on
t−1(σ).

Remark 2.3. Batch compression models are standard and are often used without
giving them any name, as in [11]. They are the batch counterpart of online
compression models used in conformal prediction [32, Chap. 11]. The three
classes shown in (1) are used in different contexts in this paper: general BCMs
serve as alternative hypotheses, the null hypothesis of interest in the main part
of the paper is the ECM, and in the appendix we will discuss more general
KCMs as null hypotheses.

With an alternative hypothesis Q and a summarising statistic t : Ω → Σ
(serving as null hypothesis) we associate the alternative Markov kernel σ ∈
Σ 7→ Qσ defined by

Qσ({ω}) :=
Q({ω})

Q(t−1(σ))
, σ ∈ Σ, ω ∈ t−1(σ). (2)

(We are mainly interested in alternative hypothesesQ for which the denominator
of (2) is always positive, but in general we could set, e.g., 0/0 := 1/2 in our
binary context.) As compared with Q, the alternative Markov kernel loses the
information about Q(t−1(σ)) for σ ∈ Σ. (And of course, the reader should keep
in mind that alternative Markov kernels and Markov alternative hypotheses are
completely different objects, despite both being named after Andrei Andreevich
Markov Sr.)

3 Frequentist performance of e-variables

Suppose Q (the alternative probability measure) is the true data-generating
distribution, and we keep generating data sequences (z1, . . . , zN ) ∈ Ω from Q
in the IID fashion. The following lemma allows us to define the efficiency of an
e-variable via its frequentist performance when we keep applying it repeatedly
to accumulate capital. This is a special case of Kelly’s criterion [6].
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Lemma 3.1. Consider an e-variable E w.r. to a Kolmogorov compression model
t : Ω → Σ. For any alternative probability measure Q on Ω, the limit1

epQ(E) := lim
I→∞

1

I
ln

I∏
i=1

E(zi1, . . . , z
i
N ) (3)

where (zi1, . . . , z
i
N ) is the ith data sequence generated from Q independently,

exists Q∞-almost surely. Moreover, for all E and Q,

epQ(E) =

∫
lnE dQ. (4)

The interpretation of (3) is that our capital
∏I

i=1 E(zi1, . . . , z
i
N ) grows expo-

nentially fast when betting repeatedly using E (we will see later, in Lemma 3.2,
that we can indeed expect it to grow rather than shrink if we can guess a good
Q), and its rate of growth is given by the expression (4), which we will refer to
as the e-power of E under the alternative Q.

Proof. It suffices to rewrite (3) as

epQ(E) = lim
I→∞

1

I

I∑
i=1

lnE(zi1, . . . , z
i
N )

and apply Kolmogorov’s law of large numbers to the IID random variables
lnE(zi1, . . . , z

i
N ) with expectation

∫
lnE dQ (which exists and is finite since the

sample space is assumed to be finite).

To justify the expression (4) using frequentist considerations, we do not really
need the IID picture, as emphasized by Neyman [16, Sect. 10]. When gener-
ating zi1, . . . , z

i
N for different i, we may test different Kolmogorov compression

models t = ti, perhaps with different time horizons N = Ni, against different
alternatives Q = Qi and using different Ei. The corresponding generalization of
Lemma 3.1 states that the long-term rate of growth of our capital will be asymp-
totically close to the arithmetic average of

∫
lnEi dQi. It will involve certain

regularity conditions needed for the applicability of the martingale strong law
of large numbers (e.g., in the form of [23, Chap. 4], which allows non-stochastic
choice of Ni, ti, Qi, and Ei). If the alternative hypothesis does not hold in all
trials, Lemma 3.1 is still applicable to the trials where it does hold.

Now it is easy to find the optimal, in the sense of epQ, e-variable; it will be
the ratio of the alternative Markov kernel to the null hypothesis.

Lemma 3.2. The maximum of epQ is attained at

E(ω) :=
∣∣t−1(t(ω))

∣∣Qt(ω)({ω}), ω ∈ Ω. (5)

1In this paper, our notation for logarithms is ln (natural) and log (binary, used only in
Appendix A).
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In this case,

mep(Q) := epQ(E) =

∫
ln
∣∣t−1(σ)

∣∣ (t∗Q)(dσ) +H(t∗Q)−H(Q), (6)

where t∗Q (a probability measure on the summary space Σ) is the push-forward
measure

(t∗Q)({σ}) := Q(t−1(σ))

of Q by t (the summarising statistic of the null hypothesis), and H(·) stands for
the entropy.

We will call mep(Q) defined by (6) the maximum e-power of the alternative
Q. A sizeable mep(Q) for a plausible alternative Q means that the testing prob-
lem is not hopeless and has some potential. The guarantee given by Lemma 3.1,
however, is frequentist and not applicable if testing is done only once, in which
case we also want the optimal e-variable (5) not to be too volatile.

Proof. In this paper we let UA stand for the uniform probability measure on
a finite non-empty set A. The optimization

∫
E dQ → max can be performed

inside each block t−1(σ) separately. Using the nonnegativity of the Kullback–
Leibler divergence, we have, for each σ ∈ t(Ω),

epQσ

(
Qσ

Ut−1(σ)

)
≥ epQσ

(E′)

for each e-variable E′ w.r. to t, which implies the first statement (about (5)) of
the lemma. The second statement (6) follows from

epQ(E) =

∫
KL(Qσ ∥ Ut−1(σ))(t∗Q)(dσ)

=

∫ (
ln
∣∣t−1(σ)

∣∣−H(Qσ)
)
(t∗Q)(dσ)

=

∫
ln
∣∣t−1(σ)

∣∣ (t∗Q)(dσ) +H(t∗Q)−H(Q),

where KL stands for the Kullback–Leibler divergence.

4 An explicit algorithm for Markov alternatives

Starting from this section we will consider a specific alternative hypothesis ob-
tained by mixing Markov probability measures. The corresponding exchange-
ability e-variable will be computable in linear time, O(N).

First let us fix some terminology. The exchangeability summary, or exchange-
ability type, of a data sequence z1, . . . , zN is the numbers (N0, N1) of 0s and 1s
in it. (It carries the same information as just the number of 1s, but we prefer
a symmetric definition despite some redundancy.) By a “substring” we always
mean a contiguous substring. The Markov type of z1, . . . , zN is the sextuple
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(F,N00, N01, N10, N11, L), where Ni,j is the number of times (i, j) occurs as
substring in the sequence z1, . . . , zN (with the comma often omitted), and F
and L are the first and last bits of the sequence.

As our alternative hypothesis, we will take the uniform mixture of the
Markov probability measures, defined as follows: π01 and π10 are generated in-
dependently from the uniform distribution U[0,1] on [0, 1]; the first bit is chosen
as 1 with probability 1/2, and after that each 0 is followed by 1 with proba-
bility π01, and each 1 is followed by 0 with probability π10. Let us compute
the probability of a sequence of a Markov type (F,N00, . . . , N11, L) under this
probability measure:

1

2

∫
(1− π01)

N00πN01
01 πN10

10 (1− π10)
N11 dπ01dπ10

=
1

2
B(N00 + 1, N01 + 1)B(N10 + 1, N11 + 1)

=
1

2

Γ(N00 + 1)Γ(N01 + 1)Γ(N10 + 1)Γ(N11 + 1)

Γ(N0∗ + 2)Γ(N1∗ + 2)

=
1

2

N00!N01!N10!N11!

(N0∗ + 1)!(N1∗ + 1)!
,

(7)

where Ni∗ := Ni,0 + Ni,1. If N1−F = 0, this probability is 1
2N (which in

fact agrees with the general expression (7)). We will refer to (7) as the UMM
probability measure, or UMM alternative, where “UMM” stands for “uniformly
mixed Markov”. The uniform prior in (7) is used for mathematical convenience
and computational efficiency, and it is discussed in greater detail at the end of
Appendix B.

For future use, set π00 := 1− π01 and π11 := 1− π10.
Following [32, Chap. 9], which in turn follows [20], let us define the lower

benchmark

LB :=
1

2

N00!N01!N10!N11!

(N0∗ + 1)!(N1∗ + 1)!(N0/N)N0(N1/N)N1
(8)

as the ratio of the UMM alternative (7) to the maximum likelihood under the IID
model (which consists of the IID probability measures BN , B being a probability
measure on {0, 1}). The idea behind the lower benchmark is that, for any IID
probability measure BN , it is an e-variable w.r. to BN , i.e., satisfies

∫
LBdBN ≤

1.
However, the IID model is not our null hypothesis, and our null hypothesis

of exchangeability is slightly more challenging. Replacing in (8) the maximum
likelihood over the IID model by the maximum likelihood over the exchangeable
probability measures, we obtain the exchangeability lower benchmark

ELB :=
1

2

(
N

N1

)
N00!N01!N10!N11!

(N0∗ + 1)!(N1∗ + 1)!
. (9)

The exchangeability lower benchmark (9) is a bona fide exchangeability e-
variable. However, our main object of interest in this paper is the more efficient
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(in the sense of its e-power) e-variable given by Lemma 3.2 with t being the
exchangeability model and Q being the UMM alternative (7). We will refer to
this optimal e-variable as the uniformly mixed Markov (UMM ) e-variable. A
more explicit expression for it and a way of computing it are given below as
(14) and Algorithm 1, respectively.

Remark 4.1. In the spirit of [10, Theorem 2], the value of the UMM e-variable
on a data sequence z1, . . . , zN can be written as

Q({(z1, . . . , zN )})
1
N !

∑
σ Q({(zσ(1), . . . , zσ(N))})

, (10)

where Q is given by (7) and σ ranges over the permutations of {1, . . . , N}.
Indeed, the denominator of (10) equals the average of Q({ω}) over ω ∈
t−1(t(z1, . . . , zN )), and so the whole expression (10) equals (5) for ω =
(z1, . . . , zN ) (and t the exchangeability model).

In fact the UMM e-variable dominates the exchangeability lower benchmark.
Indeed, the exchangeability lower benchmark replaces the right-hand side of (5)
by
∣∣t−1(t(ω))

∣∣Q({ω}), and so ignores the denominator in (2). Namely, we have

UMM(ω) =
ELB(ω)

Q(t−1(t(ω)))
.

For the e-power of the exchangeability lower benchmark we have the for-
mula (6) with the second term H(t∗Q) omitted. Indeed, according to the proof
of Lemma 3.2, that term corresponds to the denominator in (2), which the lower
benchmark ignores.

The UMM e-variable and the lower benchmark are not comparable. On the
one hand, the lower benchmark is not an exchangeability e-variable in general;
it is only an e-variable w.r. to the narrower IID model. This tends to make
the lower benchmark larger. On the other hand, the lower benchmark is not
admissible under any IID probability measure BN , in the sense of

∫
LBdBN <

1, while the UMM e-variable is admissible under any exchangeable probability
measure Q, meaning

∫
UMMdQ = 1. This tends to make the UMM e-variable

larger.

Remark 4.2. Notice that the difference between the assumptions of IID and
exchangeability, while non-existent in the case of infinite data sequences (by de
Finetti’s theorem, every exchangeable probability measure on {0, 1}∞ is a mix-
ture of IID probability measures), becomes important for finite data sequences.
The difference is quantified in [29].

In the rest of this section we will see how to compute efficiently the UMM
e-variable, i.e., the likelihood ratio of the UMM alternative Markov kernel (2)
to the null Markov kernel. In our derivation we will use the terminology of
[31, Section 8.6] (such as “Markov graph”) and consider an arbitrary finite
observation space Z (instead of {0, 1}, as in the rest of this paper); to avoid
trivialities, let us assume |Z| > 1. We will also use the following facts [31,
Lemmas 8.5 and 8.6], which are versions of standard results in graph theory
(the BEST theorem and the Matrix-Tree theorem).
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Lemma 4.3. In any Markov graph σ with the set of vertices V the number of
Eulerian paths from the source to the sink equals

T (σ)
out(sink)

∏
v∈V (out(v)− 1)!∏

u,v∈V Nu,v!
, (11)

where T (σ) is the number of spanning out-trees in the underlying digraph rooted
at the source, Nu,v is the number of darts leading from u to v, and out(·) is the
number of darts leaving a given vertex.

Proof. According to Theorem VI.28 in [26] (and using the terminology of [26,
Chap. VI]), the number of Eulerian tours in the underlying digraph is

T (σ)
∏
v∈V

(out(v)− 1)!.

If the source and sink coincide, the number of Eulerian paths is obtained by
multiplying this expression by out(source). Finally, we erase the identities of
different darts going from u to v for each pair of vertices (u, v) by dividing by
Nu,v!; the resulting expression agrees with (11).

Now suppose the source and sink are different vertices. Create a new digraph
by adding another dart leading from the sink to the source. The number of
Eulerian paths from the source to the sink in the old digraph will be equal to
the number of Eulerian tours in the new graph, i.e.,

T (σ) out(sink)
∏
v∈V

(out(v)− 1)!,

where out refers to the old digraph. It remains to erase the identities of different
darts going from u to v for each pair of vertices (u, v) in the old digraph; the
resulting expression again agrees with (11).

Alternatively, we can combine the two cases by always adding another dart
leading from the sink to the source.

Lemma 4.4. To find the number T (σ) of spanning out-trees rooted at the source
in the underlying digraph of a Markov graph σ with vertices z1, . . . , zn (z1 being
the source),

� create the n× n matrix with the elements ai,j = −Nzi,zj ;

� change the diagonal elements so that each column sums to 0;

� compute the co-factor of a1,1.

Proof. This lemma can be derived from Theorem VI.28 in [26]. In that theorem
we obtain T (σ) by computing the co-factor of any diagonal element ai,i, but that
theorem is about Eulerian digraphs. We can make the underlying digraph of
our Markov graph Eulerian by connecting the sink to the source. This operation
does not affect the number of out-trees rooted at the source and does not change
the co-factor of a1,1.

8



Let us specialize Lemmas 4.3 and 4.4 to the binary case Z := {0, 1}.

Corollary 4.5. Let σ be a Markov graph with vertices in {0, 1} and with F ∈
{0, 1} as its source. The number of Eulerian paths from the source to the sink
equals

N(σ) :=

{
NF,1−F

(N0−1)!(N1−1)!
N00!N01!N10!N11!

if N0 ∧N1 > 0

1 otherwise,
(12)

where Ni := in(i) + 1{F=i} (in(i) being the number of darts entering i, so that
Ni is the number of i on any Eulerian path) and Ni,j (with the comma often
omitted) is the number of darts leading from i to j.

Proof. The case N0 ∧N1 = 0 is obvious, so we will assume N0 ∧N1 > 0. The
number of spanning out-trees rooted at the source in the underlying digraph is

T (σ) = NF,1−F ;

this follows from Lemma 4.4 and is obvious anyway. It remains to plug this in
into Lemma 4.3: if the source F and sink L coincide, F = L, we obtain

NF,1−F
(NF − 1)(NF − 2)!(N1−F − 1)!

N00!N01!N10!N11!

for the number of Eulerian paths from the source to the sink, and if F ̸= L, we
obtain

NF,1−F
(NL − 1)(NF − 1)!(NL − 2)!

N00!N01!N10!N11!
;

both expression agree with (12).

Combining (7) and (12), we obtain the total alternative weight (i.e., proba-
bility under the alternative hypothesis) of

W (σ) :=

{
1
2NF,1−F

(N0−1)!(N1−1)!
(N0∗+1)!(N1∗+1)! if N1−F > 0

1
2N otherwise

(13)

for all data sequences of a given Markov type σ.
Under the null hypothesis the probability of a data sequence of exchange-

ability type (N0, N1) is

1/

(
N

N1

)
,

and so the likelihood ratio (the alternative over the ECM as the null hypothesis)
is

1

2

N00!N01!N10!N11!
(
N
N1

)
(N0∗ + 1)!(N1∗ + 1)!

∑
σ W (σ)

=
N00!N01!N10!N11!

(
N
N1

)
(N0∗ + 1)!(N1∗ + 1)!

∑
σ nf,1−f

(N0−1)!(N1−1)!
(n0∗+1)!(n1∗+1)!

(14)

9



(see (7) and (13)), where the σ in
∑

σ ranges over the Markov types
(f, n00, . . . , n11, l) compatible with the exchangeability type (N0, N1). The
equality in (14) holds when N0 ∧N1 > 0; in the case N0 ∧N1 = 0 the likelihood
ratio is 1 (and we will treat this case separately in Algorithm 1).

The expression (14) (interpreted as 1 when N0 ∧N1 = 0) is our main object
of interest in this paper; remember that we refer to it as the UMM e-variable.

It remains to explain how to compute the second sum
∑

σ in (14) (which
is twice as large as

∑
σ W (σ); in particular, it sums to 2 over all exchange-

ability types). Assume N0 ∧ N1 > 0 and remember that N ≥ 2. For
σ = (f, n00, . . . , n11, l) with f = l = 0 (which is only possible when N0 ≥ 2),
each such addend in the sum is

nf,1−f
(N0 − 1)!(N1 − 1)!

(n0∗ + 1)!(n1∗ + 1)!
= n01

(N0 − 1)!(N1 − 1)!

N0!(N1 + 1)!
=

n01

N0N1(N1 + 1)
.

A specific Markov type (f, n00, . . . , n11, l) is determined (once we know that
f = l = 0) by n01, and its other components can be found from the equalities

n01 = n10

N0 = n00 + n01 + 1

N1 = n01 + n11.

The valid values for n01 are between 1 and (N0 − 1) ∧ N1, and so the part of
the sum

∑
σ corresponding to such σ is

(N0−1)∧N1∑
n01=1

n01

N0N1(N1 + 1)
=

((N0 − 1) ∧N1)((N0 − 1) ∧N1 + 1)

2N0N1(N1 + 1)
. (15)

Both sides are well defined since N0 ≥ 2.
For σ with f = 0 and l = 1, the part of the sum

∑
σ corresponding to such

σ is
N0∧N1∑
n01=1

n01

N0(N0 + 1)N1
=

(N0 ∧N1)(N0 ∧N1 + 1)

2N0(N0 + 1)N1
. (16)

For σ with f = 1 and l = 0, the part of the sum
∑

σ corresponding to such σ is

N0∧N1∑
n10=1

n10

N0N1(N1 + 1)
=

(N0 ∧N1)(N0 ∧N1 + 1)

2N0N1(N1 + 1)
. (17)

Finally, for σ with f = l = 1, the part of the sum
∑

σ corresponding to such σ
is

N0∧(N1−1)∑
n10=1

n10

N0(N0 + 1)N1
=

(N0 ∧ (N1 − 1))(N0 ∧ (N1 − 1) + 1)

2N0(N0 + 1)N1
. (18)

Both sides of (18) are well defined since N1 ≥ 2.
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Algorithm 1 Computing the UMM exchangeability e-variable

Input: (z1, . . . , zN ) ∈ {0, 1}N .
Output: the value of the UMM e-variable UMM(z1, . . . , zN ).
1: Set N0 and N1 to the numbers of 0s and 1s in (z1, . . . , zN ), respectively.
2: if N0 ∧N1 = 0: return 1.

3: for i, j ∈ {0, 1}:
4: Set Ni,j to the number of substrings (i, j) in (z1, . . . , zN ).

5: ELB := 1
2

N00!N01!N10!N11!( N
N1
)

(N0∗+1)!(N1∗+1)! .

6: if N0 = N1:
7: Sum := 2

N0+1
8: else
9: Sum := N0+N1+1

(N0∨N1)(N0∨N1+1) .

10: return ELB/Sum.

We can simplify the sum of (15), (16), (17), and (18) as follows. If N0 < N1,
the sum simplifies to

N0 +N1 + 1

N1(N1 + 1)
,

and if N0 = N1, the sum simplifies to 2/(N0+1). (There is no need to consider
the case N1 < N0 because of the symmetry between N0 and N1.) Therefore,
the sum over σ on the right-hand side of (14) is

2
∑
σ

W (σ) =

{
N0+N1+1

(N0∨N1)(N0∨N1+1) if N0 ̸= N1

2
N0+1 otherwise.

(19)

The overall algorithm is presented as Algorithm 1. The value of the uni-
formly mixed Markov e-variable UMM is computed according to (14), and the
value ELB of the exchangeability lower benchmark in line 5 is just (14) with
the sum over the Markov types σ omitted. The variable Sum is set in lines 6–9
to
∑

σ W (σ) and computed according to (19). The output is returned by the
return command, and the algorithm stops as soon as the first such command
is issued.

The computational complexity of Algorithm 1 is clearly optimal (to within
a constant factor) both time-wise and memory-wise. Namely, the algorithm
requires O(N) steps and O(1) memory.

5 Maximum e-power of the UMM alternative

In this section we will compute the asymptotic efficiency of the UMM e-variable
under the UMM alternative. (In the next section, however, we will see the
weakness of our notion of efficiency: it has a long-run frequency interpretation,
but the logarithm of the UMM e-variable can be extremely volatile, and so its

11



mathematical expectation can be very different from what we actually expect
to observe.)

Proposition 5.1. Under the UMM alternative Q, the asymptotic e-power of
the UMM e-variable UMM (for time horizon N) satisfies

lim
N→∞

mep(Q)/N = lim
N→∞

epQ(UMM)/N =
8

3
ln 2 +

2

3
ln2 2− 7

36
π2 − 1

6
≈ 0.083.

The same expression gives the asymptotic e-power of the exchangeability lower
benchmark (and of the lower benchmark).

Proof. Let us compute separately the three components after the “=” in (6),
starting from the last one.

When estimating −H(Q), we need to estimate the frequenciesN00, N01, N10,
N11 for a Markov chain with transition probabilities πi,j . To this end, we define a
new Markov chain whose states are the pairs zizi+1, i = 1, . . . , N−1, of adjacent
states of the old Markov chain with the matrix of transition probabilities

P :=


π00 π01 0 0
0 0 π10 π11

π00 π01 0 0
0 0 π10 π11

 ;

the rows and columns of this matrix are labelled by the states 00, 01, 10, and
11 of the new Markov chain, in this order. The stationary probabilities for this
4× 4 matrix are(

π00π10

π01 + π10
,

π01π10

π01 + π10
,

π01π10

π01 + π10
,

π01π11

π01 + π10

)
.

Now, assuming that the observations are generated from a Markov chain with
transition probabilities πi,j , we obtain (cf. (7))

E ln

(
1

2

N00!N01!N10!N11!

(N0∗ + 1)!(N1∗ + 1)!

)
= E

(
N00 lnN00 −N00 +N01 lnN01 −N01

+N10 lnN10 −N10 +N11 lnN11 −N11

− (N00 +N01 + 1) ln(N00 +N01 + 1) + (N00 +N01 + 1)

− (N10 +N11 + 1) ln(N10 +N11 + 1) + (N10 +N11 + 1)
)
+O(N1/2)

= E
(
N00 ln

N00

N00 +N01
+N01 ln

N01

N00 +N01

+N10 ln
N10

N10 +N11
+N11 ln

N11

N10 +N11

)
+O(N1/2)

= N
π00π10

π01 + π10
lnπ00 +N

π01π10

π01 + π10
lnπ01

+N
π01π10

π01 + π10
lnπ10 +N

π01π11

π01 + π10
lnπ11 +O(N1/2)

12



(we are ignoring special cases such as N00 = 0, which should be considered
separately). To find the expectation under the Bayes mixture of the Markov
model with the uniform prior on (π01, π10), we integrate∫ 1

0

∫ 1

0

(
π00π10

π01 + π10
lnπ00 +

π01π10

π01 + π10
lnπ01

+
π01π10

π01 + π10
lnπ10 +

π01π11

π01 + π10
lnπ11

)
dπ01 dπ10

=
2

3
ln 2 +

2

3
ln2 2− 1

9
π2 − 1

6
≈ −0.481. (20)

Now let us estimate the first term∫
ln
∣∣t−1(σ)

∣∣ (t∗Q)(dσ)

after the “=” in (6). Set K := σ (this is the number of 1s), and suppose the ob-
servations are generated from a Markov chain with given transition probabilities
π01 and π10. We then have

E
(
ln

(
N

K

))
= E

(
ln

N !

K!(N −K)!

)
= E

(
ln

(N/e)N(
K
e

)K (N−K
e

)N−K

)
+O(N1/2)

= E
(
−K ln

K

N
− (N −K) ln

(
1− K

N

))
+O(N1/2)

= −Nπ1 lnπ1 −Nπ0 lnπ0 +O(N1/2),

where π0 and π1 are the stationary probabilities

π0 :=
π10

π01 + π10
and π1 :=

π01

π01 + π10

of the Markov chain. It remains to take the integral

−
∫ 1

0

∫ 1

0

(π0 lnπ0 + π1 lnπ1) dπ01 dπ10 = −2

∫ 1

0

∫ 1

0

(π0 lnπ0) dπ01 dπ10

= −2

∫ 1

0

∫ 1

0

(
π10

π01 + π10
ln

π10

π01 + π10

)
dπ01 dπ10

= 2 ln 2− 1

12
π2 ≈ 0.564. (21)

The final term H(t∗Q) in (6) can be ignored. Indeed, using the last
expression in (7), we can bound the probability (t∗Q)({K}), for any K ∈
{1, . . . , N − 1}, by 1 from above and by 1/(2N3) from below:

(t∗Q)({K}) ≥ 1

2

(N −K − 1)!0!1!(K − 1)!

(N −K)!(K + 1)!
=

1

2(N −K)K(K + 1)
≥ 1

2N3

(22)
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(the expression after the first “≥” being the probability of the sequence consist-
ing of K 1s followed by N −K 0s). Therefore, H(t∗Q) = O(lnN). (As always,
the extreme cases K ∈ {0, N} should be considered separately.)

Combining (20) and (21), we obtain the coefficient

8

3
ln 2 +

2

3
ln2 2− 7

36
π2 − 1

6
≈ 0.083 (23)

in front of N in the asymptotic expression for epQ(UMM).
The proof shows that the asymptotic e-power is the same for the exchange-

ability lower benchmark, and a simple calculation using Stirling’s formula (see,
e.g., [32, Proposition 9.2]) shows that we also have the same asymptotic e-power
for the lower benchmark.

Proposition 5.1 states that the e-powers of the UMM e-variable and of the
exchangeability lower benchmark are close asymptotically, and its proof gives
a crude argument that is still sufficient to demonstrate this. The following
corollary of the previous section’s results establishes much more precise relations
between the UMM e-variable and the exchangeability lower benchmark.

Corollary 5.2. It is always true that

1 ≤ UMM

ELB
≤ 2N. (24)

Moreover,

UMM

ELB
=

{
2(N0∨N1)(N0∨N1+1)

N0+N1+1 if N0 ̸= N1

N0 + 1 otherwise.
(25)

Proof. In the case N0 ∧N1 > 0, the relation (25) follows from (19). If N0 = 0
or N1 = 0, the expression on the right-hand side of (25) becomes 2N , which
agrees with the last expression (which simplifies to 1/(2N)) on the right-hand
side of the chain (7).

For a fixed sum N0 + N1, the maximum of the right-hand side of (25) is
attained for N0 = 0 or N1 = 0, and the maximum is 2N . This proves (24).

6 Computational experiments

In this section we will conduct three groups of experiments involving the two
lower benchmarks and the UMM exchangeability e-variable. The first group is
the main one, and in it the true data distribution is a specific Markov probability
measure with the initial probability of 1 equal to 1/2. In this case, we define
another benchmark (as in [32, Sect. 9.2.5]), the upper benchmark, as

UB :=
1

2

N00!N01!N10!N11!

(N0∗ + 1)!(N1∗ + 1)!πN0
0 πN1

1

(26)

(cf. (7)), where π0 and π1 are the stationary probabilities under the true data-
generating distribution. We can see that the upper benchmark is an e-variable

14



(likelihood ratio) w.r. to a specific IID probability measure, and so it is not even
an IID e-variable. Therefore, we should not be surprised if the upper benchmark
exceeds a bona fide exchangeability e-variable; there are two elements of cheating
in interpreting the upper benchmark as measure of evidence against the null
hypothesis of exchangeability: first, it tests IID rather than exchangeability,
and second, it tests only one individual IID measure.

Our results for specific Markov alternatives are given in Fig. 1. This figure
contains boxplots for K := 105 simulations of four values: the exchangeability
lower benchmark ELB (given by (9)), the lower benchmark LB (given by (8)),
the upper benchmark UB (given by (26)), and the UMM exchangeability e-
variable UMM (given by Algorithm 1). Only two of these, ELB and UMM, are
bona fide exchangeability e-variables. The time horizon N and the transition
probabilities for the two panels are given in the caption.

In both panel of Fig. 1 we consider symmetric Markov chains, π01 = π10,
as alternatives to exchangeability. The observations are generated from those
alternative probability measures. In the left panel we consider an “easy” case,
π01 = 0.1, in the sense of being easily distinguishable from the case of ex-
changeability, π01 = 0.5. The case in the right panel, π01 = 0.4, is closer to
exchangeability and thus more difficult. To decide which e-values are most in-
teresting in practice I used Jeffrey’s [5, Appendix B] rule of thumb involving
thresholds for e-values between 101/2 and 100. In the easy case, N = 20 obser-
vations are sufficient for the UMM e-variable to produce typical e-values that
are of the same order of magnitude as Jeffreys’s thresholds. In the difficult case,
we need more observations for that, and we set N := 400.

UMM performs better than LB in both panels and, of course, better than
ELB (we know that UMM dominates ELB). ELB and LB often fail to achieve
Jeffreys’s low threshold of 101/2 for substantial evidence against the null hypoth-
esis. It is interesting that UMM is often even higher than the upper benchmark,

ELB LB UB UMM

10 1

1

10

102

103

104

ELB LB UB UMM

10 2

10 1

1

10

102

103

104

105

Figure 1: The four e-values and related quantities, as described in text. Left
panel: N = 20 and π01 = π10 = 0.1. Right panel: N = 400 and π01 = π10 = 0.4.
Only ELB and UMM are bona fide exchangeability e-values. The number of
simulations is K = 105 in both panels.
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N π01 = π10 ELB LB UMM UMM quantiles UMM− ELB upper bound

20 0.1 −0.116 0.471 1.226 [−0.021, 0.325, 1.258, 1.993, 2.965] 1.342 1.602
400 0.4 0.084 1.482 2.427 [0.001, 1.179, 2.201, 3.479, 5.557] 2.343 2.903

Table 1: Numerical values for the decimal logarithms of the two lower bench-
marks and the UMM e-variable shown in Fig. 1. The bars stand for the averages
of the decimal logarithms. The UMM quantiles (i.e., quantiles of the UMM e-
variable) are for 5%, 25% (first quartile), 50% (median), 75% (third quartile),
and 95%. The upper bound for the difference between the decimal logarithms
of the UMM e-variable and the exchangeability lower benchmark is log10(2N),
as per (24).

as in the right panel of Fig. 1.
Table 1 gives more precise numerical values that can be read off Fig. 1 only

very approximately. The bars stand for the empirical averages of the decimal
logarithms of ELB, LB, and UMM over the same K := 105 simulations as in
Fig. 1. The table also gives the difference between the empirical averages of the
UMM and ELB and the upper bound for the difference given by (24). According
to Corollary 5.2, the UMM e-value cannot differ from the exchangeability lower
benchmark by much. The upper bound (24) holds and is not excessively loose.

Figure 2 describes the second group of experiments and explores the be-
haviour of ELB, LB, UB, and UMM under the null hypothesis (as suggested
by a referee). In the left panel the probability of 1 is 0.5, and all four are
valid e-variables; while UB is not valid under exchangeability in general, it is
valid under this particular exchangeable probability measure. The number of
observations is N = 20. The UMM e-variable performs best in this case. The
right panel has 0.1 as the probability of 1, which makes UB (still based on

ELB LB UB UMM

10 1

1

ELB LB UB UMM
10 2

10 1

1

10

102

103

104

Figure 2: Two exchangeability e-values (ELB and UMM) and two approxima-
tions (LB and UB) under the null hypothesis. Left panel: the probability of 1
is 0.5. Right panel: the probability of 1 is 0.1. The number of observations is
N = 20, and the number of simulations is K = 105.
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π0 = π1 = 0.5) very invalid. Among the valid e-variables UMM still performs
best.

The third group of experiments involves generating the binary observations
from the UMM alternative (which is not Markov any longer). The explicit
formula for this alternative is given in (7), but it is easier to generate π01 and
π10 from the uniform distribution on [0, 1]2 and then generate the observations
from the Markov chain with these parameters. This interpretation of the UMM
alternative shows that our algorithm for testing exchangeability is now in a
hostile environment: with a sizeable probability we will get π01 ≈ π10, i.e.,
difficult data sequences that look almost exchangeable.

Figure 3 shows results for this case; in the expression (26) for the upper
benchmark, we still set π0 := π1 := 0.5. It is striking how spread out the
distributions for the three benchmarks and the UMM e-variable are, demon-
strating the hostile nature of the testing environment. They are also skewed,
with the mean very different from the median. To obtain UMM e-values that
are consistently in Jeffreys’s range, now we need much larger values of N , such
as 103, shown in the left panel of Figure 3. The lack of validity for the upper
benchmark is very obvious in Figure 3: it takes much larger values, and I did
not even bother to include the whole boxplots for it.

Table 2, which is analogous to Table 1, gives more precise numbers related
to Fig. 3. As before, the bars stand for the empirical averages of the decimal
logarithms over K = 105 replications, and N is the time horizon. Now we also
have “as.”, the common theoretical asymptotic value for the UMM e-variable
and exchangeability lower benchmark obtained from (23) by dividing by ln 10
(to convert natural logarithms to decimal ones) and multiplying by the sample
size N . As expected, the approximation is least accurate for N = 103. The table
also gives the average differences between the UMM e-variable and exchange-
ability lower benchmark on the log10 scale, together with the upper bound given
by (24). The upper bound still holds.

ELB LB UB UMM

1

1050

10100

ELB LB UB UMM
1

105000

1010000

Figure 3: Two exchangeability e-values (ELB and UMM) and two approxima-
tions (LB and UB) under the UMM alternative. Left panel: N = 103. Right
panel: N = 105. The number of simulations is still K = 105.
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N ELB LB UMM as. UMM quantiles UMM− ELB upper bound

103 32.08 33.59 35.04 36.02 [−0.91, 2.67, 15.84, 50.08, 137.04] 2.965 3.301
104 354.9 356.9 358.8 360.2 [0.0, 34.6, 167.9, 505.6, 1379.6] 3.966 4.301
105 3571 3573 3575 3602 [12, 366, 1684, 5033, 13632] 4.966 5.301

Table 2: Some figures for the decimal logarithms of the two lower benchmarks
and the UMM e-variable. The bars stand for the averages of the decimal log-
arithms, and “as.” stands for the asymptotic expression, as described in text.
The UMM quantiles are for 5%, 25%, 50%, 75%, and 95%. The upper bound
for the difference between UMM and ELB is given by (24). The number of
simulations is always K = 105.

7 Conclusion

In this paper the algorithm for computing the UMM e-variable was fully devel-
oped only in the binary case. A natural next step would be to extend it to any
finite observation space Z. (A big chunk of Sect. 4, following [31, Sect. 8.6],
presented the combinatorics for an arbitrary finite observation space Z.) It is
interesting what the computational complexity of such an extension of Algo-
rithm 1 will be in general as function of N and |Z|.

The topic of this paper has been testing the exchangeability compression
model in the batch mode using Markov alternatives. There are many other
interesting null hypotheses among Kolmogorov compression models, and there
are many interesting alternatives. For example, in [32, Chap. 9] we discussed,
alongside Markov alternatives, detecting changepoints. Our discussion there
was in the online mode, but for changepoint detection the batch mode is not
less important [32, Remark 8.19]; e.g., its role has been increasing in bioinfor-
matics (including DNA analysis). Using e-values in changepoint detection is
particularly convenient when multiple hypothesis testing is involved (as it of-
ten is in batch changepoint detection). Some extensions will be discussed in
Appendixes B–C, including changepoint detection in Appendix C.
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A Algorithmic theory of randomness

The topic of this appendix is Kolmogorov’s original approach to compression
modelling. While in the main part of the paper we avoided using computability
theory, here it will play an important role.

Kolmogorov’s complexity models were introduced, in their most complete
form, in what appears to be Kolmogorov’s last talk. It was given on 14 October
1982 at what later became known as the Kolmogorov seminar; see [22, note 12],
containing Shen’s notes taken during the talk, and [30, Sect. 4]. The Kolmogorov
seminar at Moscow State University was opened by Kolmogorov on 28 October
1981, and Kolmogorov gave two talks in it, on 26 November 1981 and 14 October
1982 [22, note 12]; the two talks were conflated in my paper [30, Sect. 4].

All results listed in this appendix are either well known or immediately follow
from well-known results.

Mathematical results

In this appendix, we assume a fixed sufficiently large aggregateX of constructive
objects in the sense of [27, Sect. 1.0.6]. In particular, X contains the integers, the
finite binary sequences, and the finite sets of those. Let us use the notation C(x)
for the Kolmogorov complexity of x, C(x | y) for the conditional Kolmogorov
complexity of x given y, K(x) for the prefix complexity of x, and K(x | y) for
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the conditional prefix complexity of x given y. Here x and y are any constructive
objects from X. See, e.g., [24, Chaps 1, 2, and 4] for definitions.

Kolmogorov’s definition of randomness deficiency of an element x of a finite
set A ⊂ X is

dCA(x) := log|A| − C(x | A) (27)

[9, Sect. 2.3]. Informally, x is random in A if dCA(x) is small. (And Kolmogorov
called x ∆-random in A if dCA(x) ≤ ∆.)

Martin-Löf [15] showed that Kolmogorov’s definition (27) can be stated in
terms of p-values. Let A be a finite non-empty subset of X; remember that
UA is the uniform probability measure on A. A function f : A → [0, 1] is a
p-variable if

∀ϵ > 0 : UA(f ≤ ϵ) ≤ ϵ.

A family P of functions PA : A → [0, 1], A ranging over the finite non-empty
subsets of X, is a p-test if

� the function (A, x) 7→ PA(x) is upper semicomputable, i.e., there is an
algorithm that eventually stops on input (A, x, ϵ), where ϵ is a rational
number, if and only if PA(x) < ϵ, and

� for each finite non-empty A ⊂ X, PA is a p-variable.

The values taken by p-variables are p-values.

Lemma A.1. There exists a universal p-test P̃ , in the sense that for any p-test
P there exists a positive constant c such that P̃ ≤ cP .

The proof of Lemma A.1 is standard (cf., e.g., [24, Theorem 39]). Fix a
universal p-test P̃ . The universal p-test is unique to within a constant factor,
and it is customary in the algorithmic theory of randomness to disregard such
differences, which we will also do in this appendix.

Remark A.2. The usual definitions in the algorithmic theory of randomness are
given in terms of − logP , but for simplicity let us discard the minus logarithm,
following [35].

Now we can state Martin-Löf’s result expressing Kolmogorov’s deficiency of
randomness via the universal p-test.

Proposition A.3. There exists a constant c > 0 such that, for all A and x ∈ A,∣∣∣dCA(x) + log P̃A(x)
∣∣∣ ≤ c. (28)

Proof. Martin-Löf states and proves a slightly less general result in [15, Sect. II,
Theorem on p. 607] (see also [15, Sect. V, Theorem on p. 616]), but his argument
is general. Since, for each finite set A ⊂ X and each n ∈ {0, 1, . . . }, we have

|{x ∈ A | C(x | A) ≤ n}| ≤ 2n+1,
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we will also have

UA ({x ∈ A | log|A| − C(x | A) ≥ n}) ≤ 2−n+2,

which implies the part
dCA(x) + log P̃A(x) ≤ c

of (28).
To prove the other part of (28), i.e.,

C(x | A) ≤ log|A|+ log P̃A(x) + c,

it suffices to establish that, for some c (perhaps a different one),

∀A :
∣∣∣{x ∈ A | log|A|+ log P̃A(x) ≤ n

}∣∣∣ ≤ 2n+c,

A ranging over the finite non-empty subsects of X. The last inequality (with
c := 0) follows immediately from the definition of a p-test.

Prefix complexity K has important technical advantages over C (see, e.g.,
[24, Chap. 4]), and so a natural modification of (27) is

dKA (x) := log|A| −K(x | A). (29)

Analogously to expressing (27) in terms of p-values, we can express (29) in terms
of e-values.

A function f : A → [0,∞) on a finite non-empty set A ⊂ X is an e-variable
if ∫

f dUA ≤ 1.

A family E of functions EA : A → [0, 1], A ranging over the finite non-empty
subsets of X, is an e-test if

� the function (A, x) 7→ EA(x) is lower semicomputable, i.e., there is an
algorithm that eventually stops on input (A, x, t), where t is a rational
number, if and only if EA(x) > t, and

� for each finite non-empty A ⊂ X, EA is an e-variable.

Lemma A.4. There exists a universal e-test Ẽ, in the sense that for any e-test
E there exists a positive constant c such that Ẽ ≥ E/c.

The proof of Lemma A.4 is again standard (but [24, Theorem 47] is now
more relevant). Fix a universal e-test Ẽ. It is clear that the universal e-test is
unique to within a constant factor.

Notice the difference between the universal tests in Lemma A.1 and
Lemma A.4: whereas in the former “universal” means “smallest” (to within a
constant factor), in the latter “universal” means “largest”. The following result
expresses the prefix version (29) of deficiency of randomness via the universal
e-test.
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Proposition A.5. There exists a constant c > 0 such that, for all A and x,∣∣∣dKA (x)− log ẼA(x)
∣∣∣ ≤ c. (30)

Proposition A.5 will follow from two other propositions (Propositions A.7
and A.8 below), which, despite their simplicity (especially Proposition A.8), are
of great independent interest.

A function f : A → [0, 1] on a finite non-empty set A ⊂ X is a subprobability
measure (or semimeasure [24, Sect. 4.1]) if∑

x∈A

f(x) ≤ 1.

A family m of functions mA : A → [0, 1], A ranging over the finite non-empty
subsets of X, is a lower semicomputable subprobability measure if

� the function (A, x) 7→ mA(x) is lower semicomputable, and

� for each finite non-empty A ⊂ X, mA is a subprobability measure.

Lemma A.6. There exists a universal lower semicomputable subprobability
measure m̃, in the sense that for any lower semicomputable subprobability mea-
sure m there exists a positive constant c such that m̃ ≥ m/c.

For a proof of, essentially, Lemma A.6, see the proof of [24, Theorem 47].
Let us abbreviate “universal lower semicomputable subprobability measure” to
universal measure.

Proposition A.7. There exists a constant c > 0 such that, for all A and x,

|K(x | A) + log m̃A(x)| ≤ c.

Proof. Follow [24, Sect. 4.5].

Proposition A.8. There exists a constant c > 0 such that, for all A and x,

1

c
≤ m̃A(x)|A|

ẼA(x)
≤ c. (31)

Proof. It suffices to notice that m̃A(x)|A| is an e-test and that ẼA(x)/|A| is a
lower semicomputable subprobability measure.

The interpretation of (31) is that the universal e-test Ẽ is a likelihood ratio:
we divide the universal measure m̃ (“universal alternative hypothesis”) by the
null uniform probability measure, assigning weight 1/|A| to each x ∈ A.

Now we can easily prove Proposition A.5.
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Proof of Proposition A.5. Combining the previous propositions, we obtain∣∣∣dKA (x)− log ẼA(x)
∣∣∣ = ∣∣∣log|A| −K(x | A)− log ẼA(x)

∣∣∣
≤ |log|A|+ log m̃A(x)− log(m̃A(x)|A|)|+ c = c,

(32)

i.e., (30). The first equality in (32) just uses the definition of dKA (x), and the
inequality “≤” in (32) is obtained by applying Proposition A.7 to K(x | A) and
applying Proposition A.8 to ẼA(x).

Both complexities C and K and randomness deficiencies dC and dK are close
to each other.

Proposition A.9. There is a constant c > 0 such that, for all finite non-empty
A ⊂ X and all x ∈ A,

C(x | A)− c ≤ K(x | A) ≤ C(x | A) + 2 logC(x | A) + c (33)

and
dKA (x)− c ≤ dCA(x) ≤ dKA (x) + 2 log dKA (x) + c. (34)

Proof. See [24, Theorem 65] for inequalities stronger than (33). For (34), follow
the proof of [18, Proposition 1].

Discussion

Kolmogorov’s original definition of randomness deficiency of an element of a
finite set is (27). It can be interpreted as the universal p-value on the logarith-
mic scale (Proposition A.3). A natural modification of Kolmogorov’s definition
is (29), given in terms of prefix complexity, and it can be interpreted as the
universal e-value on the logarithmic scale (Proposition A.5).

The simplest context in which these definitions can be used is that of com-
plexity models, in the terminology of [30, 33]. A complexity model is a com-
putable partition of the sample space, and the implicit statement about the
observed data sequence x is that it is random in the sense of (27) (or (29),
which is close to (27) by Proposition A.9) in the block A ∋ x of the partition.
Let me give several examples of such models, those that are most relevant in the
context of this paper. The sample space in all these examples will be {0, 1}∗.

� The main complexity model of interest to Kolmogorov [7, 8] was that of
exchangeability, where the binary sequences {0, 1}∗ are divided into the
blocks of sequences of the same length and with the same number of 1s.
Stripping this complexity model of the algorithmic theory of randomness,
we obtain the exchangeability compression model introduced in the main
part of the paper (Sect. 2).

� Another complexity model [8] is the Markov model, in which the blocks
consist of the binary sequences with the identical first element and the
same number of substrings 00, 01, 10, and 11. In the terminology of [32,
Sect. 11.3.4], the exchangeability model is more specific than the Markov
model.
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� A further generalization of the exchangeability complexity model is the
second order Markov model (suggested in Kolmogorov’s 1982 seminar talk
[30]), in which the blocks consist of the binary sequences with the identical
first and second elements and the same number of substrings 000, 001, 010,
011, 100, 101, 110, and 111.

� A model not considered by Kolmogorov is the changepoint model (ex-
changeability with a changepoint), in which the blocks are indexed by
(N, τ,K0,K1), whereN ∈ {2, 3, . . . } (the time horizon), τ ∈ {1, . . . , N−1}
(the changepoint), K0 ∈ {0, . . . , τ}, and K1 ∈ {0, . . . , N − τ}, and the
block (N, τ,K0,K1) consists of all binary sequences of length N with K0

1s among their first τ elements and K1 1s among their last N−τ elements.

Other complexity models introduced by Kolmogorov were the Gaussian and
Poisson models (in his 1982 seminar talk [22, note 12]; see also [1, 2] and [30,
Sect. 4]). A complexity model formalizing the property of being IID rather than
exchangeability was introduced in work [29] done under Kolmogorov’s supervi-
sion.

Stochastic sequences

Kolmogorov’s 1981 seminar talk was devoted to what he called stochastic se-
quences, which can be interpreted as an overarching structure over complexity
models. Let us say that a binary data sequence x ∈ X is (α, β)-stochastic if
there is a finite set A ⊂ X containing x such that C(A) ≤ α and dCA(x) ≤ β.
And let us say that x ∈ X is ∆-random w.r. to a complexity model if dCA(x) ≤ ∆,
where A is the block of the complexity model containing x. Data sequences that
are modelled using complexity models are stochastic; e.g., for some constant c:

� if a data sequence of length N is ∆-exchangeable (i.e., ∆-random w.r. to
the exchangeability model), it is (2 logN + c,∆+ c)-stochastic; ;

� if a data sequence of length N is ∆-Markov (i.e., ∆-random w.r. to the
Markov model), it is (4 logN + c,∆+ c)-stochastic;

� if a data sequence of length N is ∆-Markov of second order, it is (8 logN+
c,∆+ c)-stochastic;

� if a data sequence of length N is ∆-random w.r. to the IID model intro-
duced in [29], it is (32 logN + c,∆+ c)-stochastic;

� if a data sequence of length N is ∆-exchangeable with one change point
(i.e., ∆-random w.r. to the changepoint model), it is (4 logN + c,∆+ c)-
stochastic.

B Quasi-universal e-variables

In this paper we are interested, at least implicitly, in the universal e-test Ẽ in-
troduced in Lemma A.4. It is a fundamental object in that its components ẼA
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are the largest e-variables; in this sense they are the most powerful e-variables.
By Proposition A.8, ẼA is the likelihood ratio of the universal measure to the
null hypothesis UA. In the main part of the paper we discussed a specific alter-
native hypothesis (namely, UMM), and the universal measure can be regarded
as the universal alternative.

The way the universal measure is constructed in the algorithmic theory
of randomness is by averaging over all subprobability measures that are com-
putable in a generalized sense (see, e.g., [24, Theorem 47], the alternative proof).

The algorithmic theory of randomness, however, provides only an ideal pic-
ture. It can serve as a model for more practical approaches, but it is not practical
itself. The two most conspicuous reasons are that:

� the basic quantities used in the algorithmic theory of randomness, such as
complexity or randomness deficiency, are not computable (they are only
computable in a generalized sense, let alone efficiently computable); in
particular, the universal alternative is not computable;

� these basic quantities are only defined to within a constant (additive or
multiplicative).

What we did in the main part of this paper can, however, be regarded as a
computable approximation to the ideal picture. The idea (which is an old one;
see the references below) is to replace the universal alternative by a Bayesian
average of a statistical model that is significantly richer than the null hypothesis.
In particular, the UMM exchangeability e-variable discussed in the main part
of this paper can be regarded as a practical approximation to the universal
e-test Ẽ.

The justification that we had for the UMM e-variable is less convincing than
the justification for its ideal counterpart Ẽ: it is the frequentist one given by
Lemma 3.1 and assuming that the observed data sequence is generated by the
UMM alternative. Its advantage, however, is that this justification does not
involve an arbitrary constant factor.

It would be more in the spirit of the algorithmic theory of randomness to use
a different principle for choosing the alternative hypothesis: instead of choosing
an alternative probability measure likely to generate the data, we could choose
an alternative probability measure likely to lead to a high likelihood ratio of the
alternative to the null.

The general scheme of testing exemplified by this paper is that we test a Kol-
mogorov compression model as null hypothesis, and have a batch compression
model with a more detailed summarising statistic as alternative. This paper has
the exchangeability compression model as the null and a mixture of the first-
order Markov model as the alternative. We can imagine lots of other testing
problems of this kind:

� The exchangeability model as the null, and the uniform mixture of the
second-order Markov model as the alternative.
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� The exchangeability model as the null, and a mixture of the uniform mix-
tures of the kth order Markov models as the alternative; the weights wk

for those should sum to 1,
∑

k wk = 1, and tend to 0 as slowly as possible
as k → ∞ (see below).

� The first-order Markov model as the null, and a mixture of the second-
order Markov model as the alternative.

� The exchangeability model as the null and the changepoint model as al-
ternative.

� A changepoint at a postulated time τ as the null, and a mixture of prob-
ability measures corresponding to a changepoint at a different time as
alternative. (In order to obtain confidence regions for the changepoint.)

We can call them instances of quasi-universal testing.
In information theory and statistics, quasi-universal prediction and coding

(similar to quasi-universal testing discussed here) was promoted by Rissanen;
see, e.g., [21] and Grünwald’s review [4]. Rissanen’s suggestion for the weights
wk, k = 1, 2, . . . , that sum to 1 and tend to 0 slowly was

wk :=
1

ck log k log log k log log log k . . .
, (35)

where the denominator includes all terms that exceed 1 and c ≈ 0.865 is the
normalizing constant [21, Appendix A].

In this paper we used the uniform prior on the Markov statistical model
to obtain our alternative hypothesis. Another natural choice is Jeffreys priors
[5]. They have some advantages, to be discussed in the next paragraph, but
their advantages in our current context are much less pronounced than in other
contexts, where they, e.g., are invariant w.r. to smooth reparametrizations [5]
and attain minimax optimality in some cases [4, Sect. 8.2] (perhaps after modi-
fications). They do not always exist, and many Bayesian statisticians find them
objectionable (see, e.g., [34, Sect. 6]). Using the uniform prior in this paper
leads to simple analytical expressions and efficient calculations.

A typical advantage of Jeffreys priors over uniform priors is that they assign
larger weights to extreme values of parameters. Let us discuss, for simplicity,
the priors considered in [20]: π01 and π10 are generated independently from
Jeffreys’s probability density

f(θ) :=
1

π
√
θ(1− θ)

, θ ∈ [0, 1] (36)

(where π ≈ 3.14 is the standard mathematical constant, not to be confused with
πi,j and not used outside of this and next paragraphs). These priors are built on
top of Jeffreys priors but are not Jeffreys priors themselves [25, Sect. 1]. They
are used in [20] for tackling problems that are similar to ours (using the Markov
model as alternative when testing exchangeability).
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The density f in (36) dominates the uniform density (if we ignore the con-
stant factor π), and it can be much larger than the uniform density at the ends
θ ≈ 0 and θ ≈ 1 of the interval [0, 1]. This is a step towards quasi-universality,
but the step is small: we can easily go further and consider, e.g., the beta
distribution with density

f(θ) :=
1

B(α, α)
θα−1(1− θ)α−1, θ ∈ [0, 1],

for a small α > 0; this would not even complicate calculations. An even better
choice would be in the direction of (35), which was an improvement on wk ∝
kα−1, but this would complicate calculations enormously. A natural next step
would be to assign small but positive point masses to θ = 0 and θ = 1.

Using the uniform prior reflects an implicit assumption that we are making
in this paper: all four probabilities πi,j , i, j ∈ {0, 1}, are middling ones (not too
close to 0 or 1).

The idea of quasi-universal testing is closely related to Lindley’s “Cromwell’s
rule” (see, e.g., [14, Sect. 6.8]). A possible interpretation of Cromwell’s rule in
our context is that, when designing a suitable e-variable, we should think of all
kinds of alternative models (say, Markov models of all orders), and then mix all
of them. Cromwell’s rule as stated by Lindley is very general and encompasses
two aspects: our statistical models should be as wide as possible, and our priors
should be diffuse (at least non-zero).

C Changepoint models

In this appendix we will discuss in greater detail the changepoint compression
models mentioned in the previous appendixes. But first we discuss a changepoint
alternative hypothesis when testing exchangeability.

In the ideal picture, we just use Ẽ of Lemma A.4 as e-test, but in practice
we could use

Q({(z1, . . . , zN )}) := 1

N − 1

N−1∑
n=1

∫ 1

0

∫ 1

0

πz1+···+zn
0 (1− π0)

n−z1−···−zn (37)

π
zn+1+···+zN
1 (1− π1)

N−n−zn+1−···−zN dπ0 dπ1 (38)

=
1

N − 1

N−1∑
n=1

B(z1 + · · ·+ zn + 1, n− z1 − · · · − zn + 1)

B(zn+1 + · · ·+ zN + 1, N − n− zn+1 − · · · − zN + 1)

=
1

N − 1

N−1∑
n=1

(z1 + · · ·+ zn)!(n− z1 − · · · − zn)!(N − n+ 1)!

(zn+1 + · · ·+ zN )!(N − n− zn+1 − · · · − zN )!(n+ 1)!
(39)

as quasi-universal alternative probability measure. The expression inside the
double integral in (37)–(38) is the likelihood of the observed data sequence
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when the probability of 1 is π0 before and including time n ∈ {1, . . . , N} (the
changepoint) and is π1 strictly after time n. We average this likelihood over the
uniform distribution for (π0, π1) and then over the uniform distribution for the
changepoint n.

The alternative Markov kernel corresponding to (39) is

QN1({(z1, . . . , zN )}) = Q({(z1, . . . , zN )})∑
z′
1,...,z

′
N :z′

1+···+z′
N=N1

Q({(z′1, . . . , z′N )})
,

where N1 := z1+· · ·+zN is interpreted as the value of the summarising statistic.
Finally, we can compute the quasi-universal e-value as

E(z1, . . . , zN ) :=

(
N

N1

)
QN1

({(z1, . . . , zN )}).

We do not discuss efficient ways of computing this e-value in this version of the
paper.

Confidence regions

Now suppose we believe that there is at most one changepoint in a binary
data sequence z1, . . . , zN and would like to pinpoint its location. To obtain a
confidence region, we need different null hypotheses.

The Kolmogorov compression model with the changepoint τ ∈ {1, . . . , N−1}
has

tτ (z1, . . . , zN ) :=

(
τ∑

n=1

zn,

N∑
n=τ+1

zn

)
(40)

as its summarising statistic. Examples of probability measures that agree with
this KCM are

P ({(z1, . . . , zN )}) :=

πz1+···+zτ
0 (1− π0)

τ−z1−···−zτπ
zτ+1+···+zN
1 (1− π1)

N−τ−zτ+1−···−zN

for π0, π1 ∈ [0, 1]. Of course, these are not all probability measures that agree
with (40); those consist of all convex mixtures of the uniform probability mea-
sures on t−1

τ (k0, k1), where (k0, k1) ∈ {0, . . . , τ} × {0, . . . , N − τ}.
As alternative probability measure we can take (39) or, which is slightly

more natural, its modification

Qτ ({(z1, . . . , zN )}) := 1

N − 2∑
n∈{1,...,N−1}\{τ}

(z1 + · · ·+ zn)!(n− z1 − · · · − zn)!(N − n+ 1)!

(zn+1 + · · ·+ zN )!(N − n− zn+1 − · · · − zN )!(n+ 1)!

that only considers changepoint locations different from τ , the one we are test-
ing. The alternative Markov kernel becomes
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Qτ,K0,K1({(z1, . . . , zN )}) =
Qτ ({(z1, . . . , zN )})∑

z′
1,...,z

′
N :z′

1+···+z′
τ=K0,z′

τ+1+···+z′
N=K1

Qτ ({(z′1, . . . , z′N )})
,

where (K0,K1) := (z1+ · · ·+zτ , zτ+1+ · · ·+zN ) is the value of the summarising
statistic. Finally, we can compute the quasi-universal e-value as

Eτ (z1, . . . , zN ) :=

(
τ

K0

)(
N − τ

K1

)
Qτ,K0,K1

({(z1, . . . , zN )}). (41)

Once we have the e-values (41), we have the e-confidence regions for the
changepoint τ : at a significance level α, the e-confidence region is {τ | Eτ ≤
1/α} (see [37]). A natural direction of further research is to find a computa-
tionally efficient version of the e-confidence regions based on (41).

D Neyman structure

In this appendix we assume, as usual in this paper, that the sample space is
finite. (In this case every function on the sample space is bounded, and we do
not have to discuss completeness and bounded completeness separately; in fact,
the most relevant notion of completeness for e-testing without this restriction
would have been “semi-bounded completeness” only involving functions that
are bounded below.)

Let us say that a statistic (i.e., function on the sample space) E is a similar
(or precise) e-variable for a statistical model {Pθ | θ ∈ Θ} if

∫
E dPθ = 1 for all

θ ∈ Θ; this is an analogue for e-testing of Neyman and Pearson’s [17, Sects IV(a)
and V(a)] notion of a similar test. And we say that a statistic E has Neyman
structure w.r. to a sufficient statistic T if Eθ(E | T ) = 1 Pθ-a.s. for all θ ∈ Θ.
This is analogous to the standard notion of Neyman structure (see, e.g., [13,
Sect. 4.3]).

A statistic T is complete if, for any function f on its range,(
Eθ(f(T )) = 0 for all θ ∈ Θ

)
=⇒

(
f(T ) = 0 Pθ-a.s. for all θ ∈ Θ

)
.

The following is an analogue of Theorem 4.3.2 in [13].

Proposition D.1. Let T be a sufficient statistic for a statistical model {Pθ |
θ ∈ Θ}. If T is complete, a statistic is a similar e-variable if and only if it has
Neyman structure w.r. to T . The condition that T be complete is both sufficient
and necessary.

Proof. Suppose T is complete. It is clear that a statistic that has Neyman
structure is a similar e-variable. Now suppose E is a similar e-variable. Set
f(T ) := Eθ(E | T ); f can be chosen independent of θ since T is sufficient. Since
Eθ(f(T ) − 1) = 0 for all θ, f(T ) = 1 Pθ-a.s. for all θ, and so E has Neyman
structure.
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Now suppose that T is not complete. Choose a [−1,∞)-valued function f
such that Eθ(f(T )) = 0 for all θ ∈ Θ but f(T ) ̸= 0 with a positive Pθ-probability
for some θ ∈ Θ. Then 1+f(T ) is a similar e-variable that does not have Neyman
structure w.r. to T .

For our purposes the following one-sided variation of having Neyman struc-
ture is more useful (although it is much less widely applicable). An e-variable
w.r. to a statistical model {Pθ | θ ∈ Θ} is a nonnegative random variable E
such that

∫
E dPθ ≤ 1 for all θ ∈ Θ. It has one-sided Neyman structure w.r. to

a sufficient statistic T if Eθ(E | T ) ≤ 1 Pθ-a.s. for all θ ∈ Θ.
Let us say that a statistic T is supercomplete if, for any function f on its

range,(
Eθ(f(T )) ≤ 0 for all θ ∈ Θ

)
=⇒

(
f(T ) ≤ 0 Pθ-a.s. for all θ ∈ Θ

)
. (42)

(It is clear that this property is stronger than completeness.) Now we have the
following analogue of Proposition D.1.

Proposition D.2. Let T be a sufficient statistic for a statistical model {Pθ |
θ ∈ Θ}. If T is supercomplete, a nonnegative random variable is an e-variable
if and only if it has one-sided Neyman structure w.r. to T . The condition that
T be supercomplete is both sufficient and necessary.

Proof. Suppose T is supercomplete. It is clear that a nonnegative variable
that has one-sided Neyman structure is an e-variable. Now suppose E is an
e-variable. Set f(T ) := Eθ(E | T ). Since Eθ(f(T ) − 1) ≤ 0 for all θ, f(T ) ≤ 1
Pθ-a.s. for all θ, and so E has one-sided Neyman structure.

Now suppose that T is not supercomplete. Choose a [−1,∞)-valued function
f such that Eθ(f(T )) ≤ 0 for all θ ∈ Θ but f(T ) > 0 with a positive Pθ-
probability for some θ ∈ Θ. Then 1 + f(T ) is an e-variable that does not have
Neyman structure w.r. to T .

The following two examples show that the notion of supercompleteness is
limited albeit not vacuous.

Example D.3 (exchangeability). The summarising statistic tE of the exchange-
ability compression model (we can set tE to the number of 1s in the data se-
quence) is supercomplete w.r. to the exchangeability statistical model (consist-
ing of all exchangeable probability measures). This is because for each summary
k there exists an exchangeable probability measure concentrated on t−1

E (k).
(And it is clear that this argument is applicable to any batch compression model
and the family of all probability measures that agree with it.)

Example D.4 (IID). On the other hand, tE is not supercomplete w.r. to the
Bernoulli statistical model (Bθ | θ ∈ (0, 1)) (where Bθ is the probability measure
on {0, 1} satisfying Bθ({1}) = θ). The standard argument for completeness as
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given in [13, Example 4.3.1] now fails. A function f satisfying the first inequality
in (42) can be written as

N∑
k=0

f(k)

(
N

k

)
ρk ≤ 0, for all ρ ∈ (0,∞), (43)

and under the supercompleteness we would have concluded that f ≤ 0. But
on the left-hand side of (43) we can have any polynomial of degree N , and a
polynomial can be nonpositive without all its coefficients being nonpositive. An
example is −(ρ− 1)2, which corresponds to the function

f(k) :=


−1 if k = 0
2
N if k = 1

− 2
N(N−1) if k = 2

0 otherwise.
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